\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input nlode.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994. @ <<*>>= <<license>> -------------------------- nlode.input -------------------------------- )cl all -- this will be the unknown y := operator y -- some non-linear non-exact 1st order equations deq := (sin y x - x / y(x)) * differentiate(y x, x) = 1 -- the result with no initial condition is a first integral -- when equated to any constant solve(deq, y, x) deq := differentiate(y x, x) = y(x) / (x + y(x) * log y x) solve(deq, y, x) -- same with initial condition y(1) = 1 -- the result is a first integral if equated to 0 solve(deq, y, x = 1, [1]) deq := (exp(- 2 * y x) - 2 * x * y x) * differentiate(y x, x) = y x solve(deq, y, x) -- this one has an independent parameter w, initial condition y(0) = 0 deq := differentiate(y x, x) = w + y(x) / (1 - y x) solve(deq, y, x = 0, [0]) -- Bernoulli equation: the result is a first integral when equated to -- any constant, but it can be explicitly solved for y(x) deq := x**2 * differentiate(y x, x) + 2 * x * y x - y(x)**3 solve(deq, y, x) -- Riccati equation: the result is a first integral when equated to -- any constant, but it can be explicitly solved for y(x) deq := differentiate(y x,x) = 1 + x**2 - 2 * x * y x + y(x)**2 solve(deq, y, x) -- Riccati equation: the result is a first integral when equated to -- any constant, but it can be explicitly solved for y(x) deq := x**2 * differentiate(y x,x) = -1 - x * y x + x**2 * y(x)**2 solve(deq, y, x) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}