\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input mountain.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994. @ <<*>>= <<license>> -- Draw a fractal mountain )clear all -- compile the functions )set function compile on -- Generate Gaussian random numbers -- Algorithm by Richard Voss from "The Science of Fractal Images", pg. 77 -- function to convert a number into machine floating point sf f == f::DFLOAT Nrand := 4 Arand := 2**26 - 1 GaussAdd := sqrt(sf(3.0) * Nrand) GaussFac := sf(2.0) * GaussAdd/((sf Nrand) * (sf Arand)) -- generate a random number Gauss() == sum := sf 0.0 for i in 1..Nrand repeat sum := sum + random()$INT GaussFac * sum - GaussAdd -- Generate fractal mountains. -- Algorithms by Richard Voss from "The Science of Fractal Images", pg. 100 sfHalf := sf 0.5 sfThree := sf 3.0 sfFour := sf 4.0 f3(delta,x0,x1,x2) == (x0+x1+x2)/sfThree + delta*Gauss() f4(delta,x0,x1,x2,x3) == (x0+x1+x2+x3)/sfFour + delta*Gauss() -- perform midpoint subdivision MidPointFM(maxLevel, sigma, H) == N := 2**maxLevel delta := sigma arraySize := (N+1) X:IARRAY2(DFLOAT,0,0) := new(arraySize, arraySize, sf 0.0) setelt(X, 0, 0, delta*Gauss()) setelt(X, 0, N, delta*Gauss()) setelt(X, N, 0, delta*Gauss()) setelt(X, N, N, delta*Gauss()) D := N d := N quo 2 for stage in 1..maxLevel repeat delta := delta*(sfHalf**(sfHalf*H)) for x in d..(N-d) by D repeat for y in d..(N-d) by D repeat setelt(X, x, y, f4(delta, elt(X,x+d,y+d), elt(X,x+d,y-d), elt(X, x-d, x+d), elt(X, x-d, y-d))) for x in 0..N by D repeat for y in 0..N by D repeat setelt(X, x, y, elt(X,x,y) + delta*Gauss()) delta := delta*(sfHalf**(sfHalf*H)) for x in d..(N-d) by D repeat setelt(X,x,0, f3(delta, elt(X,x+d,0), elt(X,x-d,0), elt(X,x,d))) setelt(X,x,N, f3(delta, elt(X,x+d,N), elt(X,x-d,N), elt(X,x,N-d))) setelt(X,0,x, f3(delta, elt(X,0,x+d), elt(X,0,x-d), elt(X,d,x))) setelt(X,N,x, f3(delta, elt(X,N,x+d), elt(X,N,x-d), elt(X,N-d,x))) for x in d..(N-d) by D repeat for y in D..(N-d) by D repeat setelt(X,x,y, f4(delta, elt(X,x,y+d), elt(X,x,y-d), elt(X,x+d,y), elt(X,x-d,y))) for x in D..(N-d) by D repeat for y in d..(N-d) by D repeat setelt(X,x,y, f4(delta, elt(X,x,y+d), elt(X,x,y-d), elt(X,x+d,y), elt(X,x-d,y))) for x in 0..N by D repeat for y in 0..N by D repeat setelt(X,x,y, elt(X,x,y) + delta*Gauss()) for x in d..(N-d) by D repeat for y in d..(N-d) by D repeat setelt(X,x,y, elt(X,x,y) + delta*Gauss()) D := D quo 2 d := d quo 2 X sfZero := sf 0 Sigma := sf 7 -- function passed to the draw tableVal(x: DFLOAT, y:DFLOAT):DFLOAT == free table, xIndex, yIndex, rowSize val := elt(table, xIndex, yIndex) xIndex := xIndex + 1 if xIndex > rowSize then (xIndex := 0; yIndex := yIndex + 1) val < sfZero => sfZero val -- draw a mountain with maxLevel subdivisions with Haussdorf dimension H -- the number of subdivisions of the mountain is 2**maxLevel, so you -- probably should keep maxLevel <= 8. Also 0 < H <= 1. The closer -- H is to one, the smoother the mountain will be. drawMountain(maxLevel, H) == free table, xIndex, yIndex, rowSize table := MidPointFM(maxLevel, Sigma, H) N := 2**maxLevel xIndex := 0 yIndex := 0 rowSize := N draw(tableVal, -20..20, -20..20, var1Steps == N, var2Steps == N, title == "Fractal Mountain") drawMountain(3, sf 0.95) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}