\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input lupfact.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1991. @ <<*>>= <<license>> -- This file contains some functions that compute LUP factorizations of -- matrices over a field. The main function to call is lupFactor. It -- accepts one argument, which should be a non-singular square matrix. -- If the matrix is not square, "failed" will be returned. If the matrix -- is non-singular, a 'cannot coerce "failed"' error will be displayed. -- lupFactor returns a Union(List Matrix field,"failed") object. Coerce -- this to a List Matrix field before you try to use it. See the comment -- before the definition of lupFactor for the reference for the -- algorithm. )clear all -- state the field here field := Fraction Integer -- next computes a permutation matrix for mult on the right permMat: (INT, INT, INT) -> Matrix field permMat(dim, i, j) == m : Matrix field := diagonalMatrix [(if i = k or j = k then 0 else 1) for k in 1..dim] m(i,j) := 1 m(j,i) := 1 m -- find first col in first row that is nonzero or returns 0 nonZeroCol: Matrix field -> INT nonZeroCol(m) == foundit := false col := 1 for i in 1..ncols(m) while not foundit repeat for j in 1..nrows(m) while not foundit repeat if not(m(j,i) = 0) then col := i foundit := true col -- this embeds the given square matrix in a larger square matrix -- where the extra space is filled with 1s on the diagonal, 0 elsewhere. embedMatrix: (Matrix field,NNI,NNI) -> Matrix field embedMatrix(m, oldDim, newDim) == n := diagonalMatrix([1 for i in 1..newDim])$(Matrix(field)) setsubMatrix!(n,1,1,m) n -- following implements algorithm in "The Design and Analysis of -- Computer Algorithms" by Aho, Hopcroft and Ullman lupFactorEngine: (Matrix field, INT, INT) -> List Matrix field lupFactorEngine(a, m, p) == m = 1 => l : Matrix field := diagonalMatrix [1] pm : Matrix field := permMat(p,1,nonZeroCol a) [l,a*pm,pm] m2 : NNI := m quo 2 b : Matrix field := subMatrix(a,1,m2,1,p) c : Matrix field := subMatrix(a,m2+1,m,1,p) lup := lupFactorEngine(b,m2,p) l1 := lup.1 u1 := lup.2 pm1 := lup.3 d : Matrix field := c * (inverse(pm1) :: Matrix(field)) e : Matrix field := subMatrix(u1,1,m2,1,m2) f : Matrix field := subMatrix(d,1,m2,1,m2) g : Matrix field := d - f * (inverse(e) :: Matrix(field)) * u1 pmin2 : NNI := p - m2 g' : Matrix field := subMatrix(g,1,nrows(g),p - pmin2 + 1,p) lup := lupFactorEngine(g',m2,pmin2) l2 := lup.1 u2 := lup.2 pm2 := lup.3 pm3 := horizConcat(zero(pmin2,m2)$(Matrix field), pm2) pm3 := vertConcat(horizConcat(diagonalMatrix [1 for i in 1..m2], zero(m2,pmin2)$(Matrix field)),pm3) h : Matrix field := u1 * (inverse(pm3) :: Matrix(field)) l : Matrix field := horizConcat(l1, zero(m2,m2)$(Matrix field)) l := vertConcat(l,horizConcat(f * (inverse(e) :: Matrix(field)), l2)) u : Matrix field := horizConcat(zero(m2,m2)$(Matrix field), u2) u := vertConcat(h,u) pm := pm3 * pm1 [l,u,pm] -- next computes floor of log base 2 of an integer intLog2: NNI -> NNI intLog2 n == if n = 1 then 0 else 1 + intLog2(n quo 2) -- here is the function to call lupFactor: Matrix field -> Union(List Matrix field,"failed") lupFactor m == not((r := nrows m) = ncols m) => messagePrint("Matrix must be square")$OUTFORM "failed" ilog := intLog2(2) not(r = 2 ** ilog) => m := embedMatrix(m,r,(n := 2 ** (ilog + 1))) l := lupFactorEngine(m,n,n) [subMatrix(l.1,1,r,1,r),subMatrix(l.2,1,r,1,r), subMatrix(l.3,1,r,1,r)] lupFactorEngine(m,r,r) -- Example from Aho, et al. m : Matrix field := zero(4,4) for i in 4..1 by -1 repeat m(5-i,i) := i m lupFactor m -- Example where the dimension does not start out a power of 2 m := [[1,2,3],[2,3,1],[3,1,2]] @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}