\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input lodo.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1991. @ <<*>>= <<license>> ---------------------------------- lodo.input ----------------------------- -- LODO2(M,A) is the domain of linear ordinary differential operators over -- an A-module M, where A is a differential ring. This includes the -- cases of operators which are polynomials in D acting upon scalars or -- vectors depending on a single variable. The coefficients of the -- operator polynomials can be integers, rational functions, matrices -- or elements of other domains. ------------------------------------------------------------------------ -- Differential operators with constant coefficients ------------------------------------------------------------------------ )clear all RN:=FRAC INT Dx: LODO2(RN, UP(x,RN)) Dx := D() -- definition of an operator a := Dx + 1 b := a + 1/2*Dx**2 - 1/2 p: UP(x,RN) := 4*x**2 + 2/3 -- something to work on a p -- application of an operator to a polynomial (a*b) p = a b p -- multiplication is defined by this identity c := (1/9)*b*(a + b)**2 -- exponentiation follows from multiplication (a**2 - 3/4*b + c) (p + 1) -- general application of operator expressions ------------------------------------------------------------------------ -- Differential operators with rational function coefficients ------------------------------------------------------------------------ )clear all RFZ := FRAC UP(x,INT) (Dx, a, b): LODO1 RFZ Dx := D() b := 3*x**2*Dx**2 + 2*Dx + 1/x a := b*(5*x*Dx + 7) p: RFZ := x**2 + 1/x**2 (a*b - b*a) p -- operator multiplication is not commutative -- When the coefficients of the operator polynomials come from a field -- it is possible to define left and right division of the operators. -- This allows the computation of left and right gcd's via remainder -- sequences, and also the computation of left and right lcm's. leftDivide(a,b) -- result is the quotient/remainder pair a - (b * %.quotient + %.remainder) rightDivide(a,b) a - (%.quotient * b + %.remainder) -- A GCD doesn't necessarily divide a and b on both sides. e := leftGcd(a,b) leftRemainder(a, e) -- remainder from left division rightRemainder(a, e) -- remainder from right division -- An LCM is not necessarily divisible from both sides. f := rightLcm(a,b) leftRemainder(f, b) rightRemainder(f, b) -- the remainder is non-zero ------------------------------------------------------------------------ -- -- Problem: find the first few coefficients of exp(x)/x**i in -- Dop phi -- where -- Dop := D**3 + G/x**2 * D + H/x**3 - 1 -- phi := sum(s[i]*exp(x)/x**i, i = 0..) ------------------------------------------------------------------------ )clear all Dx: LODO(EXPR INT, f +-> D(f, x)) Dx := D() Dop:= Dx**3 + G/x**2*Dx + H/x**3 - 1 n == 3 phi == reduce(+,[subscript(s,[i])*exp(x)/x**i for i in 0..n]) phi1 == Dop(phi) / exp x phi2 == phi1 *x**(n+3) phi3 == retract(phi2)@(POLY INT) pans == phi3 ::UP(x,POLY INT) pans1 == [coefficient(pans, (n+3-i) :: NNI) for i in 2..n+1] leq == solve(pans1,[subscript(s,[i]) for i in 1..n]) leq n==4 leq n==7 leq ------------------------------------------------------------------------ -- Differential operators with matrix coefficients acting on vectors. ------------------------------------------------------------------------ )clear all PZ := UP(x,INT); Vect := DPMM(3, PZ, SQMATRIX(3,PZ), PZ); Modo := LODO2(SQMATRIX(3,PZ), Vect) p := directProduct([3*x**2 + 1, 2*x, 7*x**3 + 2*x]::(VECTOR(PZ)))@Vect m := [[x**2, 1, 0], [1, x**4, 0], [0, 0, 4*x**2]]::(SQMATRIX(3,PZ)) -- Vect is a left SM(3,PZ)-module q: Vect := m * p -- Operator combination and application Dx: Modo := D() a: Modo := 1*Dx + m b: Modo := m*Dx + 1 a*b a p b p (a+b) (p + q) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}