\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input lodesys.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994. @ <<*>>= <<license>> )cl all -- There are 2 different ways to input a homogeneous 1st order system of -- linear ordinary differential equations of the form dy/dt = M y -- where y is a vector of unknown functions of t. -- the first is simply solve(M, t) which will be understood to be -- a differential system: M := matrix [[ 1+4*t, -5*t, 7*t, -8*t, 8*t, -6*t],_ [ -10*t, 1+9*t, -14*t, 16*t, -16*t, 12*t],_ [ -5*t, 5*t, 1-8*t, 8*t, -8*t, 6*t],_ [ 10*t, -10*t, 14*t,1-17*t, 16*t, -12*t],_ [ 5*t, -5*t, 7*t, -8*t, 1+7*t, -6*t],_ [ -5*t, 5*t, -7*t, 8*t, -8*t, 1+5*t]] -- the original system in Barkatou's AAECC paper is t^2 dy/dt = M*y sol := solve(inv(t**2) * M, t) -- verify the solutions [t**2 * map(h +-> D(h, t), v) - M * v for v in sol] -- the second way is to type each equation using a separate operator for -- each unknown: x := operator x y := operator y sys := [D(x t, t) = x t + sqrt 3 * y t, D(y t, t) = sqrt 3 * x t - y t] solve(sys, [x, y], t).basis -- Similarly there are 2 different ways to input the inhomogeneous system -- dy/dt = M y + v where v is a given vector of functions. -- the first is solve(M, v, t): v := vector [1, (-29*t + 19)/5, -1, t + 1, - 2*t + 3, -1] -- get a particular solution to t^2 dy/dt = M y + v solp := solve(inv(t**2) * M, inv(t**2) * v, t).particular -- verify the particular solution t**2 * map(h +-> D(h, t), solp) - M * solp - v -- the second way is by listing the equations: z := operator z sys := [D(x t, t) = y t + z t + t, D(y t, t) = x t + z t, D(z t, t) = x t + y t] solve(sys, [x, y, z], t).particular @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}