\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input lode.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1991. @ <<*>>= <<license>> -------------------------------- lode.input --------------------------- )cl all -- this will be the unknown y := operator y -- homogeneous equation with constant coefficients deq := differentiate(y x, x, 2) + differentiate(y x, x) + y x solve(deq, y, x).basis -- initial value problem: y'' + y = 0, y(0) = y'(0) = 1 deq := differentiate(y x, x, 2) + y x solve(deq, y, x = 0, [1, 1]) -- same with a non-constant right-hand side solve(deq = sin x, y, x) -- some inhomogenuous equations with rational coefficients deq := x**3 * differentiate(y x, x, 3) + x**2 * differentiate(y x, x, 2) - _ 2 * x * differentiate(y x, x) + 2 * y x = 2 * x**4 solve(deq, y, x) -- same with initial conditions solve(deq, y, x = 1, [b, 0, a]) -- third order equation with nontrivial singularities deq := (x**9 + x**3) * differentiate(y x, x, 3) + _ 18 * x**8 * differentiate(y x, x,2) - 90 * x * differentiate(y x, x) - _ 30 * (11*x**6-3) * y x solve(deq, y, x).basis -- third order equation on a curve of genus 0 deq := (2*x+2)* differentiate(y x, x, 3) + 3* differentiate(y x, x, 2) + _ (2*x**2+2*x)* differentiate(y x,x) - sqrt(x+1) * y x = 2 * x**2 + x - 1 solve(deq, y, x).particular -- this equation is irreducible over the rational functions deq := 2*x**3*differentiate(y x,x,2) + 3*x**2*differentiate(y x,x) - 2*y x solve(deq,y,x).basis @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}