\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input images8a.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994. @ <<*>>= <<license>> -- Sierpinsky's Tetrahedron -- Sierpinsky's Tetrahedron -- Bring DH matrices into the environment )set expose add con DenavitHartenbergMatrix -- Create Affine transformations (DH matrices) that transform -- a given triangle into another given triangle -- tri2tri(t1, t2) returns a DHMATRIX which transforms t1 to t2, -- where t1 and t2 are the vertices of two triangles in 3-space. tri2tri(t1: List Point DoubleFloat, t2: List Point DoubleFloat): DHMATRIX(DoubleFloat) == n1 := triangleNormal(t1) n2 := triangleNormal(t2) tet2tet(concat(t1, n1), concat(t2, n2)) -- tet2tet(t1, t2) returns a DHMATRIX which transforms t1 to t2, -- where t1 and t2 are the vertices of two tetrahedrons in 3-space. tet2tet(t1: List Point DoubleFloat, t2: List Point DoubleFloat): DHMATRIX(DoubleFloat) == m1 := makeColumnMatrix t1 m2 := makeColumnMatrix t2 m2 * inverse(m1) -- put the vertices of a tetrahedron into matrix form makeColumnMatrix(t) == m := new(4,4,0)$DHMATRIX(DoubleFloat) for x in t for i in 1..repeat for j in 1..3 repeat m(j,i) := x.j m(4,i) := 1 m -- return a vector normal to the given triangle, whose length -- is the square root of the area of the triangle triangleNormal(t) == a := triangleArea t p1 := t.2 - t.1 p2 := t.3 - t.2 c := cross(p1, p2) len := length(c) len = 0 => error "degenerate triangle!" c := (1/len)*c t.1 + sqrt(a) * c -- compute the are of a triangle using Heron's formula triangleArea t == a := length(t.2 - t.1) b := length(t.3 - t.2) c := length(t.1 - t.3) s := (a+b+c)/2 sqrt(s*(s-a)*(s-b)*(s-c)) -- set up the coordinates of the corners of a tetrahedron x1:DoubleFloat := sqrt(2.0@DoubleFloat/3.0@DoubleFloat) x2:DoubleFloat := sqrt(3.0@DoubleFloat)/6 p1 := point [-0.5@DoubleFloat, -x2, 0.0@DoubleFloat] p2 := point [0.5@DoubleFloat, -x2, 0.0@DoubleFloat] p3 := point [0.0@DoubleFloat, 2*x2, 0.0@DoubleFloat] p4 := point [0.0@DoubleFloat, 0.0@DoubleFloat, x1] -- The base of the tetrahedron baseTriangle := [p2, p1, p3] -- The "middle triangle" inscribed in the base of the tetrahedon mt := [0.5@DoubleFloat*(p2+p1), 0.5@DoubleFloat*(p1+p3), 0.5@DoubleFloat*(p3+p2)] -- The bases of the triangles of the subdivided tetrahedon bt1 := [mt.1, p1, mt.2] bt2 := [p2, mt.1, mt.3] bt3 := [mt.2, p3, mt.3] bt4 := [0.5@DoubleFloat*(p2+p4), 0.5@DoubleFloat*(p1+p4), 0.5@DoubleFloat*(p3+p4)] -- create the transformations which bring the base of the tetrahedron -- to the bases of the subdivided tetrahedron tt1 := tri2tri(baseTriangle, bt1) tt2 := tri2tri(baseTriangle, bt2) tt3 := tri2tri(baseTriangle, bt3) tt4 := tri2tri(baseTriangle, bt4) -- Draw a Sierpinsky tetrahedron with n levels of recursive subdivision drawPyramid(n) == s := create3Space()$ThreeSpace DoubleFloat dh := rotatex(0.0@DoubleFloat) drawPyramidInner(s, n, dh) makeViewport3D(s, "Sierpinsky Tetrahedron")$VIEW3D -- Recursively draw a Sierpinsky tetrahedron drawPyramidInner(s, n, dh) == n = 0 => makeTetrahedron(s, dh, n) -- draw the 4 recursive pyramids drawPyramidInner(s, n-1, dh * tt1) drawPyramidInner(s, n-1, dh * tt2) drawPyramidInner(s, n-1, dh * tt3) drawPyramidInner(s, n-1, dh * tt4) -- draw a tetrahedron into the given space, with the given color, -- transforming it by the given DH matrix makeTetrahedron(sp, dh, color) == w1 := dh*p1 w2 := dh*p2 w3 := dh*p3 w4 := dh*p4 polygon(sp, [w1, w2, w4]) polygon(sp, [w1, w3, w4]) polygon(sp, [w2, w3, w4]) void() drawPyramid 4 -- Antoine's Rings -- Draw Antoine's Necklace -- Thanks to Matt Grayson (formerly at IBM's T.J Watson Research Center) -- for the idea. -- Bring DH matrices into the environment )set expose add con DenavitHartenbergMatrix -- The current transformation for drawing a sub-ring torusRot: DHMATRIX(DoubleFloat) -- Draw Antoine's Rings with n levels of recursive subdivision. -- The number of subrings is 10**n. drawRings(n) == s := create3Space()$ThreeSpace DoubleFloat -- create an identity transformation dh:DHMATRIX(DoubleFloat) := identity() drawRingsInner(s, n, dh) makeViewport3D(s, "Antoine's Necklace") -- Recursively draw Antoine's Necklace. drawRingsInner(s, n, dh) == n = 0 => drawRing(s, dh) void() t := 0.0@DoubleFloat -- the current angle around the ring p := 0.0@DoubleFloat -- the angle of the subring from the plane tr := 1.0@DoubleFloat -- the amount to translate the subring inc := 0.1@DoubleFloat -- translation increment -- subdivide the ring into 10 linked rings for i in 1..10 repeat tr := tr + inc inc := -inc dh' := dh * rotatez(t) * translate(tr, 0.0@DoubleFloat, 0.0@DoubleFloat) * rotatey(p) * scale(0.35@DoubleFloat, 0.48@DoubleFloat, 0.4@DoubleFloat) drawRingsInner(s, n-1, dh') t := t + 36.0@DoubleFloat p := p + 90.0@DoubleFloat void() -- draw a single ring into the given subspace, transformed by the given -- DHMATRIX. drawRing(s, dh) == free torusRot torusRot := dh makeObject(torus, 0..2*%pi, 0..2*%pi, var1Steps == 6, space == s, var2Steps == 15) -- Parameterization of a torus, transformed by the DHMATRIX in torusRot. torus(u ,v) == cu := cos(u)/6 torusRot * point [(1+cu)*cos(v), (1+cu)*sin(v), (sin u)/6] drawRings 2 -- Scherk's Minimal surface -- Defined by: -- exp(z) * cos(x) = cos(y) -- See: A comprehensive Introduction to Differential Geometry, Vol. 3, -- by Michael Spivak, Publish Or Persih, Berkeley, 1979, pp 249-252. -- Off set for a single piece of Scherk's minimal surface (xOffset, yOffset):DoubleFloat -- DrawScherk's minimal surface on an m by n patch. drawScherk(m,n) == free xOffset, yOffset space := create3Space()$ThreeSpace(DoubleFloat) for i in 0..m-1 repeat xOffset := i*%pi for j in 0 .. n-1 repeat rem(i+j, 2) = 0 => 'iter yOffset := j*%pi drawOneScherk(space) makeViewport3D(space, "Scherk's Minimal Surface") -- The four patches which make up a single piece of Scherk's minimal surface. scherk1(u,v) == x := cos(u)/exp(v) point [xOffset + acos(x), yOffset + u, v, abs(v)] scherk2(u,v) == x := cos(u)/exp(v) point [xOffset - acos(x), yOffset + u, v, abs(v)] scherk3(u,v) == x := exp(v) * cos(u) point [xOffset + u, yOffset + acos(x), v, abs(v)] scherk4(u,v) == x := exp(v) * cos(u) point [xOffset + u, yOffset - acos(x), v, abs(v)] -- We draw the surface by breaking it into 4 patches, and drawing them -- into a single space. drawOneScherk(s) == makeObject(scherk1, -%pi/2..%pi/2, 0..%pi/2, space == s, _ var1Steps == 28, var2Steps == 28) makeObject(scherk2, -%pi/2..%pi/2, 0..%pi/2, space == s, _ var1Steps == 28, var2Steps == 28) makeObject(scherk3, -%pi/2..%pi/2, -%pi/2..0, space == s, _ var1Steps == 28, var2Steps == 28) makeObject(scherk4, -%pi/2..%pi/2, -%pi/2..0, space == s, _ var1Steps == 28, var2Steps == 28) void() drawScherk(3,3) -- Ribbon Plot of [x**i for i in 1..5] drawRibbons(flist, xrange, yrange) == sp := createThreeSpace() num := # flist yVar := variable yrange y0:Float := lo segment yrange width:Float := (hi segment yrange - y0)/num for f in flist for color in 1..num repeat makeObject(f, xrange, yVar = y0..y0+width, var2Steps == 1, colorFunction == (x,y) +-> color, space ==sp) y0:= y0 + width vp := makeViewport3D(sp, "Ribbons") drawStyle(vp, "shade") outlineRender(vp, "on") showRegion(vp, "on") vp )set message test off drawRibbons([x**i for i in 1..5], x=-1..1, y=0..2) )set message test on @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}