\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input images5a.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994-1996. @ <<*>>= <<license>> -- Etruscan Venus -- Parameterization by George Frances venus(a,r,steps) == surf := (u:DoubleFloat, v:DoubleFloat): Point DoubleFloat +-> cv := cos(v) sv := sin(v) cu := cos(u) su := sin(u) x := r * cos(2*u) * cv + sv * cu y := r * sin(2*u) * cv - sv * su z := a * cv point [x,y,z] draw(surf, 0..%pi, -%pi..%pi, var1Steps==steps,var2Steps==steps, title == "Etruscan Venus") venus(5/2, 13/10, 50) -- Figure Eight Klein Bottle -- Parameterization from: -- "Differential Geometry and Computer Graphics" by Thomas Banchoff -- in Perspectives in Mathemtaics, Anneversry of Oberwolfasch 1984. -- Beirkhauser-Verlag, Basel, pp 43-60. klein(x,y) == cx := cos(x) cy := cos(y) sx := sin(x) sy := sin(y) sx2 := sin(x/2) cx2 := cos(x/2) sq2 := sqrt(2.0@DoubleFloat) point [cx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _ sx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _ -sx2 * (sq2 + cy) + cx2 * sy * cy] draw(klein, 0..4*%pi, 0..2*%pi, var1Steps==50, var2Steps==50, _ title=="Figure Eight Klein Bottle") -- Twisted torus -- Generalized tubes. -- The functions in this file draw a 2-d curve in the normal -- planes around a 3-d curve. The computations are all done -- numerically in machine-precision floating point for efficiency. R3 := Point DoubleFloat -- Points in 3-Space R2 := Point DoubleFloat -- Points in 2-Space S := Segment Float -- Draw ranges ThreeCurve := DoubleFloat -> R3 -- type of a space curve function TwoCurve := (DoubleFloat, DoubleFloat) -> R2 -- type of a plane curve function Surface := (DoubleFloat, DoubleFloat) -> R3 -- type of a parameterized surface function -- Frenet frames define a coordinate system around a point on a space curve FrenetFrame := Record(value: R3, tagent: R3, normal: R3, binormal: R3) -- Holds current Frenet frame for a point on a curve frame: FrenetFrame -- compile, don't interpret functions )set fun compile on -- Draw a generalized tube. -- ntubeDraw(spaceCurve, planeCurve, u0..u1, t0..t1) -- draws planeCurve int the normal planes of spaceCurve. u0..u1 specifies -- the paramter range of the planeCurve and t0..t1 specifies the parameter -- range of the spaceCurve. Additionally the plane curve function takes -- as a second parameter the current parameter of the spaceCurve. This -- allows the plane curve to evolve as it goes around the space curve. -- see "page5.input" for an example of this. ntubeDraw: (ThreeCurve, TwoCurve, S, S) -> VIEW3D ntubeDraw(spaceCurve, planeCurve, uRange, tRange) == ntubeDrawOpt(spaceCurve, planeCurve, uRange, tRange, []$List DROPT) -- ntuberDrawOpt is the same as ntuberDraw, but takes optional -- parameters which it passes to the draw command. ntubeDrawOpt: (ThreeCurve, TwoCurve, S, S, List DROPT) -> VIEW3D ntubeDrawOpt(spaceCurve, planeCurve, uRange, tRange, l) == delT:DoubleFloat := (hi(tRange) - lo(tRange))/10000 oldT:DoubleFloat := lo(tRange) - 1 fun := ngeneralTube(spaceCurve, planeCurve, delT, oldT) draw(fun, uRange, tRange, l) -- nfrenetFrame(c, t, delT) numerically computes the Frenet Frame -- about the curve c at t. delT is a small number used to -- compute derivatives. nfrenetFrame(c, t, delT) == f0 := c(t) f1 := c(t+delT) t0 := f1 - f0 -- the tangent n0 := f1 + f0 b := cross(t0, n0) -- the binormal n := cross(b,t0) -- the normal ln := length n lb := length b ln = 0 or lb = 0 => error "Frenet Frame not well defined" n := (1/ln)*n -- make into unit length vectors b := (1/lb)*b [f0, t0, n, b]$FrenetFrame -- nGeneralTube(spaceCurve, planeCurve, delT, oltT) -- creates a function which can be passed to the system draw command. -- The function is a parameterized surface for the general tube -- around the spaceCurve. delT is a small number used to compute -- derivatives, and oldT is used to hold the current value of the -- t parameter for the spaceCurve. This is an efficiency measure -- to ensure that frames are only computed once for every value of t. ngeneralTube: (ThreeCurve, TwoCurve, DoubleFloat, DoubleFloat) -> Surface ngeneralTube(spaceCurve, planeCurve, delT, oldT) == free frame (v:DoubleFloat, t: DoubleFloat): R3 +-> if (t ~= oldT) then frame := nfrenetFrame(spaceCurve, t, delT) oldT := t p := planeCurve(v, t) frame.value + p.1*frame.normal + p.2*frame.binormal -- rotate a 2-d point by theta round the origin rotateBy(p, theta) == c := cos(theta) s := sin(theta) point [p.1*c - p.2*s, p.1*s + p.2*c] -- a circle in 3-space bcircle t == point [3*cos t, 3*sin t, 0] -- an elipse which twists around 4 times as t revolves once. twist(u, t) == theta := 4*t p := point [sin u, cos(u)/2] rotateBy(p, theta) ntubeDrawOpt(bcircle, twist, 0..2*%pi, 0..2*%pi, _ var1Steps == 70, var2Steps == 250) -- Striped torus -- a twisting circle twist2(u, t) == theta := t p := point [sin u, cos(u)] rotateBy(p, theta) -- color function producing 21 stripes cf(u,v) == sin(21*u) ntubeDrawOpt(bcircle, twist2, 0..2*%pi, 0..2*%pi, _ colorFunction == cf, var1Steps == 168, var2Steps == 126) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}