\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input huang.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1996. @ <<*>>= <<license>> -- this is here strictly for documentation purposes, nothing is executed -- -- Here are some problems that Maple and Mathematica cannot --solve, but SymbMath can do. -- The following examples came from news on the sci.math.symbolic --newsgroup in 1991, and were run in Maple V, Mathematica 2.0, or --SymbMath 2.1. -- --************************ Example 1 ****************************** -- Maple: --> int(exp(-a * x^2), x=0..infinity); -- -- infinity -- / -- | 2 -- | exp(- a x ) dx -- | -- / -- 0 -- --# unevaluated. --# Declare 'a' non-negative: -- --> signum(a) := 1; -- -- signum(a) := 1 -- --# The same integral is now evaluated fully: -- --> int(exp(-a * x^2), x=0..infinity); -- -- 1/2 -- Pi -- 1/2 ----- -- 1/2 -- a -- -- SymbMath : -- Input: --inte(exp(-a*x^2), x from 0 to inf) --assume(sqrt(a) > 0) --inte(exp(-a*x^2), x from 0 to inf) -- Output: --1/2*a^(-0.5)*sqrt(pi)*erf(inf*sgn(sqrt(a))) --assumed --1/2*a^(-0.5)*sqrt(pi) -- --************************** Example 2 ********************************* -- Maple: --# Despite the fact that 'n' is declared non-negative... --> signum(n) := 1; -- signum(n) := 1 -- --# ...this simple proper definite integral (that any freshman calculus --# student can evaluate!) is left unevaluated: --> int(x^n, x=0..1); -- -- 1 -- / -- | n -- | x dx -- | -- / -- 0 -- -- -- SymbMath : -- Input: --assume(n > -1) --inte(x^n, x from 0 to 1) -- Output: --assumed --1/(1 + n) -- --************************** Example 3 ***************************** -- Maple: --> int(x^n, x=eps..1); -- -- (n + 1) -- 1 eps -- ----- - ---------- -- n + 1 n + 1 -- --# ...but the one-sided limit... -- --> limit(", eps=0, right); -- -- (n + 1) -- 1 eps -- limit ----- - ---------- -- eps -> 0+ n + 1 n + 1 -- --# ...remains unevaluated... -- --> simplify("); -- -- (n + 1) -- - 1 + eps -- limit - ---------------- -- eps -> 0+ n + 1 -- -- --# ...no matter what we do! -- --> eval("); -- -- (n + 1) -- - 1 + eps -- limit - ---------------- -- eps -> 0+ n + 1 -- -- SymbMath: -- Input: --assume(n > -1) --inte(x^n, x from eps to 1) --subs(eps=0 to last) -- Output: --assumed --1/(1 + n) - eps^(1 + n)/(1 + n) --1/(1 + n) -- -- --*************************** Example 4 *************************** -- Maple: --> 0^n; -- 0 -- --# Maple flags the error only when 'n' is replaced by the constant 0: -- --> 0^0; --Error, 0^0 is undefined -- -- SymbMath: -- Input: --assume(n > 0) --0^n --0^-n --0^0 -- Output: --assumed --0 --discont --undefined -- --**************************** Example 5 ****************************** -- Maple: --> int(x^k, x); -- -- (k + 1) -- x -- -------- -- k + 1 -- -- SymbMath: -- Input: --inte(x^k*d(x)) --subs(k=-1 to last) -- Output: --constant + x^(1 + k)/(1 + k) --discont -- --**************************** Example 6 ***************************** -- Maple: --# The following limit is left unevaluated: --> limit(x^k/exp(x), x=infinity); -- -- k -- x -- limit ------ -- x -> infinity exp(x) -- -- --# We might ask if Maple knows this result for specific (constant) values --# of the symbolic parameter 'k'. The answer is a QUALIFIED "yes". --# Maple knows the result for 'k' equal to 10^8... -- --> limit(x^(10^8)/exp(x), x=infinity); -- -- 0 -- -- --# ...and Maple knows the result for 'k' equal to 10^9... -- --> limit(x^(10^9)/exp(x), x=infinity); -- -- 0 -- --# ...BUT, Maple seems to FORGET the result when 'k' equals 10^10... -- --> limit(x^(10^10)/exp(x), x=infinity); -- -- 10000000000 -- x -- limit ------------ -- x -> infinity exp(x) -- -- SymbMath: -- Input: --lim(x=inf, x^k/exp(x)) --lim(x=inf, x^(10^10)/exp(x)) --lim(x=inf, x^(10^10000)/exp(x)) -- Output: --0 --0 --0 -- --****************************** Example 7 **************************** -- Maple: --> int(x^m * exp (-b * x), x=0..infinity); -- -- infinity -- / -- | m -- | x exp(- b x) dx -- | -- / -- 0 -- -- --# As expected, the integral remains unevaluated. Now declare the signs --# of the symbolic parameters: -- --> signum(b) := 1; -- -- signum(b) := 1 -- --> signum(m) := 1; -- -- signum(m) := 1 -- -- --# Upon attempting to compute the integral a second time... -- --> int(x^m * exp (-b * x), x=0..infinity); -- -- infinity -- / -- | m -- | x exp(- b x) dx -- | -- / -- 0 -- --# ...THE INTEGRAL CONTINUES TO REMAIN UNEVALUATED, despite the fact that --# the signs of the parameters 'b' and 'm' were declared PRIOR to the second --# attempt at computation. -- -- SymbMath: -- Input: --inte(x^n*exp(-a*x), x from 0 to inf) -- Output: --inte(x^n*exp(-a*x), x, 0, inf) -- -- --************************ Example 8 ********************************* -- Mathematica: --In[1]:= Integrate[1/x,{x,-1,1}] --Out[1]= -Log[-1] -- -- Maple: --has the same problem. -- -- SymbMath: -- Input: --inte(1/x, x from -1 to 1) --inte(1/x, x from -1 to 2) -- Output: --0 --ln(2) -- -- --*************************** Example 9 ******************************* -- Maple: --has a problem for int(tan(x), x=0..pi). -- -- SymbMath: -- Input: --inte(tan(x), x from 0 to pi) -- Output: --0 -- --**************************** Example 10 **************************** -- Mathematica: --cannot evaluate integral of sgn(x). -- -- Maple: --# cannot evaluate inegral of signum(x) by int(). Help with a procedure: --# Load the procedure into Maple: -- --> read `pvint.txt`; -- --pvint := proc(f,x,a,b,s) -- local i1,i2,eps; -- signum(eps) := 1; -- i1 := int(f,x = a .. s-eps); -- i2 := int(f,x = s+eps .. b); -- simplify(i1+i2); -- limit(",eps = 0,right) -- end -- -- --> pvint(signum(x), x, -1, 1, 0); -- -- - eps 1 -- / / -- | | -- limit | signum(x) dx + | signum(x) dx -- eps -> 0+ | | -- / / -- -1 eps -- --# Maple refuses to evaluate this P.V. integral: -- --> simplify("); -- -- - eps 1 -- / / -- | | -- limit | signum(x) dx + | signum(x) dx -- eps -> 0+ | | -- / / -- -1 eps -- --> eval("); -- -- - eps 1 -- / / -- | | -- limit | signum(x) dx + | signum(x) dx -- eps -> 0+ | | -- / / -- -1 eps -- -- SymbMath: -- Input: --inte(sgn(x), x from -1 to 1) --inte(sgn(x), x from -1 to 2) -- Output: --0 --1 -- --************************* Example 11 ******************************** --Implicit diff. gives 1+y'[x](1+1/y[x])==0; y'[x]==-y[x]/(y[x]+1). -- -- Mathematica: -- given this eq. as input to DSolve says that built-in -- procedure can't solve it. -- -- MACSYMA: --(c1) depends(y,x)$ -- --(c2) ode2(diff(y,x) = -y/(y+1),y,x); -- --(d2) - log(y) - y = x + %c -- --(c3) method; -- --(d3) separable -- -- -- SymbMath: --solve the differential equation by integration inte() or by dsolve(). -- Input: --d(y)/d(x)*(1+1/y) === -1 --inte(last*d(x)) --Expand=On --dsolve(d(y)/d(x) === -y/(y+1), y) -- Output: --(1 + 1/y)*d(y)/d(x) === -1 --y + ln(y*sgn(y)) === constant - x --Expand = On ---y - ln(y*sgn(y)) === constant + x -- -- --************************* Example 12 ******************************** -- Mathematica: -- y'[x] = y[x]^(1/2) -- y[0] = 0 -- --DSolve could not handle it. (It rarely solves anything!!), and the --RungeKutta package only gave me the solution -- -- y[x]=0 -- --Obviously, there is another solution viz. -- -- y[x] = (x/2)^2 -- -- SymbMath: -- Input: --dsolve(d(y)/d(x) === sqrt(y), y) --(last/2)^2 -- Output: --2*sqrt(y) === constant + x --y === 1/4*(constant + x)^2 -- --************************* Example 13 ******************************** -- Maple: --> sqrt(x*x); -- x -- -- Mathematica: -- Sqrt[a^2] evaluates to Sqrt[a^2]. -- -- SymbMath: -- Input: --sqrt(x^2) --assume(a > 0) --sqrt(a^2) --assume(b <0 ) --sqrt(b^2) -- Output: --x*sgn(x) --assumed --a --assumed ---b -- --********************** Example 14 ********************************** -- Maple and Mathematica cannot find the integrals of abs(x). -- -- SymbMath: -- Input: --inte(abs(x), x from -1 to 1) --inte(abs(x)^5*d(x)) -- Output: --1 --constant + 1/6*abs(x)^6*sgn(x) -- ----------------------------------------------------------------------- -- -- The following problems are taken from Swokowski's Calculus --book. They cause Mathematica to fail because of a singularity in --the interior of the interval of integration: -- -- Section 10.4 Problems 3, 12, 15, 16, 23, 29. -- --The comments "INTEGRAL IS DIVERGENT" and "Principal Value" come from --Macsyma. Mma gives no indication that anything is amiss. -- --************************ Problem3 ********************************* -- Mathematica: --In[4]:= Integrate[1/x^2,{x,-3,1}] -- -- 4 --Out[4]= -(-) (* INTEGRAL IS DIVERGENT *) -- 3 -- -- SymbMath: -- Input: --inte(1/x^2, x from -3 to 1) -- Output: --inf -- --************************** Problem12 *************************** -- Mathemtica: --In[6]:= Integrate[x^(-4/3),{x,-1,1}] -- --Out[6]= -6 (* INTEGRAL IS DIVERGENT *) -- -- SymbMath: -- Input: --inte(x^(-4/3), x from -1 to 1) -- Output: --inf -- --**************************** Problem15 ************************ -- Mathematica: --In[7]:= Integrate[1/x,{x,-1,2}] -- --Out[7]= -Log[-1] + Log[2] -- -- Maple: --has the same problem. -- -- Macsyma: -- (c7) integrate(1/x,x,-1,2); -- Principal Value -- (d7) log(2) -- -- SymbMath: -- Input: --inte(1/x, x from -1 to 2) -- Output: --ln(2) -- -- --********************** Problem16 ************************************ -- Mathematica: --In[8]:= Integrate[1/(x^2-x-2),{x,0,4}] -- -- -Log[-2] Log[2] Log[5] --Out[8]= -------- + ------ - ------ -- 3 3 3 -- -- Macsyma: -- (c8) integrate(1/(x^2-x-2),x,0,4); -- Principal Value -- log(5) -- (d8) - ------ -- 3 -- -- -- SymbMath: -- Input: --inte(1/(x^2-x-2), x from 0 to 4) -- Output: ---1/3*ln(2) + 1/3*ln(2/5) -- --***************************** Problem23 ********************** -- Mathematica: --In[10]:= Integrate[(1/x^2)Cos[1/x],{x,-1,2}] -- -- 1 --Out[10]= Sin[-1] - Sin[-] (* INTEGRAL IS DIVERGENT *) -- 2 -- -- SymbMath: -- Input: --y=1/x^2*cos(1/x) --inte(y, x from -1 to 0-zero) + inte(y, x from 0+zero to 2) -- Output: --y = x^(-2)*cos(1/x) --sin(-1) - sin(1/2) + 2*sin(inf) -- --************************** Problem29 ******************************** -- Mathematica: --In[12]:= Integrate[1/(x-4)^2,{x,0,Infinity}] -- -- 1 --Out[12]= -(-) (* INTEGRAL IS DIVERGENT *) -- 4 -- -- SymbMath: -- Input: --y=1/(x-4)^2 --inte(y, x from 0 to 4-zero) + inte(y, x from 4+zero to inf) -- Output: --y = (-4 + x)^(-2) --inf @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}