\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input hilbert.as} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{Hilbert input tests} <<input>>= )compile hilbert.as mon1 := monom(4,0,0,0) mon2:= monom(3,3,0,0) mon3 := monom(3,2,1,0) mon4 := monom(3,1,2,0) mon5 := monom(0,2,0,1) mon6 := monom(0,1,0,5) l := [mon1, mon2, mon3, mon4, mon5, mon6] Hilbert l idA := varMonomsPower(6,5); #idA Hilbert idA idB := varMonomsPower(6,6); #idB Hilbert idB idC := varMonomsPower(12,3); #idC Hilbert idC idD:=[monom(2,0,0,0),monom(1,1,0,0),monom(1,0,1,0),monom(1,0,0,1),_ monom(0,3,0,0),monom(0,2,1,0)]^4; #idD Hilbert idD @ \section{License} <<license>>= -- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions are -- met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- -- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS -- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED -- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A -- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER -- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<input>> #include "axiom.as" #pile -- This file computes hilbert functions for monomial ideals -- ref: "On the Computation of Hilbert-Poincare Series", -- Bigatti, Caboara, Robbiano, -- AAECC vol 2 #1 (1991) pp 21-33 macro Monom == Monomial L == List SI == SingleInteger B == Boolean POLY == SparseUnivariatePolynomial Integer Array == Vector import from NonNegativeInteger import from SingleInteger import from Segment SI import from Integer Monomial : OrderedSet with totalDegree: % -> SI divides?: (%, %) -> B homogLess: (%, %) -> B quo: (%, %) -> % quo: (%, SI) -> % *: (%, %) -> % varMonom: (i:SI,n:SI, deg:SI) -> % variables: L % -> L SI apply: (%, SI) -> SI #: % -> SI monom: Tuple SI -> % == Array(SingleInteger) add Rep ==> Array(SingleInteger) import from Rep monom(t:Tuple SI):% == per [ t ] totalDegree(m:%):SI == sum:SI := 0 for e in rep m repeat sum := sum + e sum divides?(m1:%, m2:%):B == for e1 in rep m1 for e2 in rep m2 repeat if e1 > e2 then return false true (m1:%) < (m2:%):B == for e1 in rep m1 for e2 in rep m2 repeat if e1 < e2 then return true if e1 > e2 then return false false -- (m1:%) > (m2:%):B == m2 < m1 homogLess(m1:%, m2:%):B == (d1:=totalDegree(m1)) < (d2:=totalDegree(m2)) => true d1 > d2 => false ( m1 < m2) (m:%) quo (v:SI):% == --remove vth variable -- per [((if i=v then 0 else (rep m).i) for i in 1..#rep m)] m2:= copy rep m m2.v := 0 per m2 (m1:%) quo (m2:%):% == per [(max(a1-a2,0) for a1 in rep m1 for a2 in rep m2)] (m1:%) * (m2:%):% == per [(a1+a2 for a1 in rep m1 for a2 in rep m2)] varMonom(i:SI,n:SI, deg:SI):% == -- per [((if j=i then deg else 0$SI) for j in 1..n)] m:Rep := new(n, 0) m.i := deg per m variables(I:L %) :L SI == empty? I => nil n:SI:=# rep first I ans : L SI := nil v:SI:=0 while (v:=v+1)<=n repeat -- for v in 1..n repeat for m in I repeat (rep m).v ~= 0 => ans := cons(v, ans) break ans HilbertFunctionPackage: with Hilbert: L Monom -> POLY adjoin: (Monom, L Monom) -> L Monom == add adjoin(m:Monom, lm:L Monom):L Monom == empty?(lm) => cons(m, nil) ris1:L Monom:= empty() ris2:L Monom:= empty() while not empty? lm repeat m1:Monom := first lm lm := rest lm if m <= m1 then if not divides?(m,m1) then (ris1 := cons(m1, ris1)) iterate ris2 := cons(m1, ris2) if divides?(m1, m) then return concat!(reverse!(ris1), concat!(reverse! ris2, lm)) concat!(reverse!(ris1), cons(m, reverse! ris2)) reduce(lm:L Monom):L Monom == lm := sortHomogRemDup(lm) empty? lm => lm ris :L Monom := nil risd:L Monom := list first lm d := totalDegree first lm for m in rest lm repeat if totalDegree(m)=d then risd := cons(m, risd) else ris := mergeDiv(ris, risd) d := totalDegree m risd := [m] mergeDiv(ris, risd) mergeDiv( small:L Monom, big:L Monom): L Monom == ans : L Monom := small for m in big repeat if not contained?(m,small) then ans := cons(m, ans) ans contained?(m:Monom, id: L Monom) : B == for mm in id repeat divides?(mm, m) => return true false (I:L Monom) quo (m:Monom):L Monom == reduce [mm quo m for mm in I] sort(I:L Monom, v:SI):L Monom == sort((a:Monom,b:Monom):B+->(a.v < b.v), I) sortHomogRemDup(l:L Monom):L Monom == l:=sort(homogLess, l) empty? l => l ans:L Monom := list first l for m in rest l repeat if m ~= first(ans) then ans:=cons(m, ans) reverse! ans decompose(I:L Monom, v:SI):Record(size:SI, ideals:L L Monom, degs:L SI) == I := sort(I, v) idlist: L L Monom := nil deglist : L SI := nil size : SI := 0 J: L Monom := nil while not empty? I repeat d := first(I).v tj : L Monom := nil local m:Monom while not empty? I and d=(m:=first I).v repeat tj := cons(m quo v, tj) I := rest I J := mergeDiv(tj, J) idlist := cons(J, idlist) deglist := cons(d, deglist) size := size + ((#J)::Integer::SI) [size, idlist, deglist] var(n:SI) : SparseUnivariatePolynomial Integer == monomial(1$Integer, n::Integer::NonNegativeInteger) Hilbert(I:L Monom):POLY == empty? I => 1 -- no non-zero generators = 0 ideal empty? rest I => var(0) - var(totalDegree first I) lvar :L SI := variables I import from Record(size:SI, ideals:L L Monom, degs:L SI) Jbest := decompose(I, first lvar) for v in rest lvar while (#I)::Integer::SI < Jbest.size repeat JJ := decompose(I, v) JJ.size < Jbest.size => Jbest := JJ import from L L Monom import from L SI Jold:List Monom := first(Jbest.ideals) dold:SI := first(Jbest.degs) f:SparseUnivariatePolynomial Integer:=var(dold)*Hilbert(Jold) for J:List Monom in rest Jbest.ideals for d:SI in rest Jbest.degs repeat f := f + (var(d) - var(dold)) * Hilbert(J) dold := d var(0) - var(dold) + f MonomialIdealPackage: with varMonomsPower: (SI, SI) -> L Monom *: (L Monom, L Monom) -> L Monom ^: (L Monom, SI) -> L Monom == add varMonoms(n:SI):L Monom == -- [varMonom(i,n,1) for i in 1..n] i:SI:=0 [varMonom(i,n,1) while {free i; (i:=i+1)<=n}] varMonomsPower(n:SI, deg:SI):L Monom == n = 1 => [ monom(deg)] ans : L Monom := nil -- for j in 0..deg repeat j:SI:=-1 while (j:=j+1)<=deg repeat ans := concat(varMonomMult(j,varMonomsPower(n-1,deg-j)), ans) ans varMonomMult(i:SI, mlist : L Monom) : L Monom == [varMonomMult(i, m) for m in mlist] varMonomMult(i:SI, m:Monom) : Monom == nm:Array SI := new(#m + 1, i) -- for k in 1..#m repeat nm.k :=m.k k:SI:=0 while (k:=k+1)<=#m repeat nm.k :=m.k nm pretend Monom (i1:L Monom) * (i2:L Monom):L Monom == import from HilbertFunctionPackage ans : L Monom := nil for m1 in i1 repeat for m2 in i2 repeat ans := adjoin(m1*m2, ans) ans (i:L Monom) ^ (n:SI) : L Monom == n = 1 => i odd? n => i * (i*i)^shift(n, -1) (i*i)^shift(n,-1) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}