\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input heat.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1996. @ <<*>>= <<license>> -- ----------[ A x i o m ]---------- -- ---------- Initialization ---------- )set messages autoload off )set quit unprotected -- This is the heat equation u:= operator('u) heat:= D(u(x, t), t) - D(u(x, t), x, 2) = 0 -- This is the similarity form of the proposed solution f:= operator('f) s:= rule(u(x, t) == f(x/sqrt(t))/sqrt(t)) -- Apply s to the heat equation s(lhs(heat)) = 0 -- Change to the similarity variable z = x/sqrt(t) subst(lhs(%), x = z*sqrt(t)) = 0 -- Eliminate the denominator % * denom(lhs(%)) -- Now, solve the ordinary differential equation eq:=% solve(%, f, z=0,[k1,k2]) -- Finally, transform back to the original variables subst(%, z = x/sqrt(t))/sqrt(t) -- If we set k2 = 0 and k1 = 1/(2*sqrt(%pi)) in the previous expression, -- we will obtain the usual fundamental solution of the heat equation subst(%, [k2 = 0, k1 = 1/(2*sqrt(%pi))]) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}