\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input gonshor.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1991. @ <<*>>= <<license>> ------------- Some examples of algebras in genetics ------------- -- Literature: -- [WB] A. Woerz-Busekros: Algebras in Genetics, LNB 36, -- Springer-Verlag, Berlin etc. 1980. --------------- Commutative, non-associative algebras -- -- A Gonshor genetic algebra ([WB], p. 41-42) of dimension 4: -- ========================================================= )clear all -- The coefficient ring: R := FRAC POLY INT -- The following multiplication constants may be chosen arbitrarily -- (notice that we write ckij for c_(i,j)^k): (c100, c101, _ c200, c201, c202, c211, _ c300, c301, c302, c303, c311, c312, c322) : R ---------------------------------------------------------------- c100 := 1 ; c101 := -1 ; ---------------------------------------------------------------- c200 := 0 ; c201 := 1 ; c202 := -1 ; c211 := 2 ; ---------------------------------------------------------------- c300 := 1 ; c301 := 0 ; c302 := -1 ; c303 := 1 ; c311 := 1 ; c312 := 0 ; c322 := 2 ; ---------------------------------------------------------------- -- The matrices of the multiplication constants: gonshor : List SquareMatrix(4,R) := [matrix [ [1, 0, 0, 0], [0, 0, 0, 0],_ [0, 0, 0, 0], [0, 0, 0, 0] ],_ matrix [ [c100, c101, 0, 0], [c101, 0, 0, 0],_ [0, 0, 0, 0], [0, 0, 0, 0] ],_ matrix [ [c200, c201, c202, 0], [c201, c211, 0, 0],_ [c202, 0, 0, 0], [0, 0, 0, 0] ],_ matrix [ [c300, c301, c302, c303], [c301, c311, c312, 0],_ [c302, c312, c322, 0], [c303, 0, 0, 0] ] ] ; basisSymbols : List Symbol := [subscript(e,[i]) for i in 0..3] GonshorGenetic := ALGSC(R, 4, basisSymbols, gonshor) commutative?()$GonshorGenetic associative?()$GonshorGenetic -- The canonical basis: e0 : GonshorGenetic := [1, 0, 0, 0] :: Vector R ; e1 : GonshorGenetic := [0, 1, 0, 0] :: Vector R ; e2 : GonshorGenetic := [0, 0, 1, 0] :: Vector R ; e3 : GonshorGenetic := [0, 0, 0, 1] :: Vector R ; -- A generic element of the algebra: x : GonshorGenetic := x0*e0 + x1*e1 + x2*e2 + x3*e3 -- The matrix of the left multiplication with x : Lx := leftRegularRepresentation x -- leftRegularRepresentationt 8 : GonshorGenetic -> R be the weight homomorphism -- defined by 8(e0) := 1 and 8(ei) := 0 for i = 1,2,3 . -- The coefficients of the characteristic polynomial -- of Lx depend only on 8(x) = x0 : p := characteristicPolynomial(Lx,Y) -- The left minimal polynomial of x divides Y * p(Y) : leftMinimalPolynomial x )clear prop A a b c r s A := GonshorGenetic a := x b := (1/4)*e1 + (1/5)*e2 + (3/20)*e3 + (2/5)*e0 c := (1/3)*e1 + (1/7)*e2 + (8/21)*e3 + (1/7)*e0 r : R := r s : R := s b*c (b*c)*b b*(c*b) -- A: Algebra -- a,b,c : A -- r,s : R )clear prop AP AP := ALGPKG(R,A) r*a a*r a*b b*c 12 * c (-3) * a d := a ** 12 -d a + b d-c (a*(a*a) = leftPower(a,3)) :: Boolean (a ** 11 = (a**8 * a**2) * a) :: Boolean (a ** 11 = a**8 * (a**2 * a)) :: Boolean zero := 0$A zero : A := 0 alternative?()$A antiCommutative?()$A associative?()$A commutative?()$A commutator(a,b) antiCommutator(a,b) associator(a,b,c) basis()$A n := rank()$A v : Vector R := [i for i in 1..n] g : A := represents v coordinates a coordinates [a,b] a.3 flexible?()$A leftAlternative?()$A rightAlternative?()$A sB := someBasis()$A zero? a associatorDependence()$A --conditionsForIdempotents()$A jacobiIdentity?()$A jordanAlgebra?()$A jordanAdmissible?()$A lieAdmissible?()$A --conditionsForIdempotents sB b2 := [reduce(+,[sB.i for i in 1..k]) for k in 1..n] coordinates (a ,b2 :: Vector A) coordinates ([a,b] ,bb := (b2 :: Vector A)) leftMinimalPolynomial a leftPower (a,10) rightPower(a,10) leftRegularRepresentation a leftRegularRepresentation (a,bb) leftUnit()$A represents (v,bb) rightMinimalPolynomial a rightRegularRepresentation a rightRegularRepresentation (a,bb) rightUnit()$A structuralConstants()$A structuralConstants(bb) unit()$A -- functions from ALGPKG biRank a leftRank a doubleRank a rightRank a weakBiRank a basisOfCenter()$AP basisOfLeftNucleus()$AP basisOfNucleus()$AP basisOfRightNucleus()$AP basisOfCentroid()$AP basisOfCommutingElements()$AP basisOfLeftNucloid()$AP basisOfMiddleNucleus()$AP basisOfRightNucloid()$AP @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}