\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input genups.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1991. @ <<*>>= <<license>> )cl all taylor(n +-> 1/factorial(n),x = 0) -- expansion of exp(x) at x = 0 taylor(n +-> (-1)**(n-1)/n,x = 1,1..) -- expansion of log(x) at x = 1 taylor(n +-> (-1)**(n-1)/n,x = 1,1..6) -- truncated expansion of log(x) laurent(m +-> m**2,x = 7,-2..) -- infinite Laurent expansion laurent(m +-> m**2,x = 7,-2..5) -- finite Laurent expansion puiseux(i +-> (-1)**((i-1)/2)/factorial(i),x = 0,1..,2) -- sin(x) at x = 0 puiseux(i +-> (-1)**(i/2)/factorial(i),x = 0,0..,2) -- cos(x) at x = 0 -- puiseux(i +-> (-1)**((i-1)/2)/factorial(i),x = 0,1..9,2) -- truncated sin(x) -- interpretor needs help here puiseux(i +-> (-1)**((i-1)/2)/factorial(i),x = 0,1..9/1,2) -- truncated sin(x) puiseux(j +-> j,x = 8,-4/3..,1/2) puiseux(j +-> j,x = 8,-4/3..1/6,1/2) -- same computations using expressions instead of functions taylor(1/factorial(n),n,x = 0) -- expansion of exp(x) at x = 0 taylor((-1)**(n-1)/n,n,x = 1,1..) -- expansion of log(x) at x = 1 taylor((-1)**(n-1)/n,n,x = 1,1..6) -- truncated expansion of log(x) laurent(m**2,m,x = 7,-2..) -- infinite Laurent expansion laurent(m**2,m,x = 7,-2..5) -- finite Laurent expansion puiseux((-1)**((i-1)/2)/factorial(i),i,x = 0,1..,2) -- sin(x) at x = 0 puiseux((-1)**(i/2)/factorial(i),i,x = 0,0..,2) -- cos(x) at x = 0 -- puiseux((-1)**((i-1)/2)/factorial(i),i,x = 0,1..9,2) -- truncated sin(x) -- interpretor needs help here puiseux((-1)**((i-1)/2)/factorial(i),i,x = 0,1..9/1,2) -- truncated sin(x) puiseux(j,j,x = 8,-4/3..,1/2) puiseux(j,j,x = 8,-4/3..1/6,1/2) -- all of the above commands should still work when the functions 'taylor', -- 'laurent', and 'puiseux' are replaced by 'series': series(n +-> 1/factorial(n),x = 0) -- expansion of exp(x) at x = 0 series(n +-> (-1)**(n-1)/n,x = 1,1..) -- expansion of log(x) at x = 1 series(n +-> (-1)**(n-1)/n,x = 1,1..6) -- truncated expansion of log(x) series(m +-> m**2,x = 7,-2..) -- infinite Laurent expansion series(m +-> m**2,x = 7,-2..5) -- finite Laurent expansion series(i +-> (-1)**((i-1)/2)/factorial(i),x = 0,1..,2) -- sin(x) at x = 0 series(i +-> (-1)**(i/2)/factorial(i),x = 0,0..,2) -- cos(x) at x = 0 -- series(i +-> (-1)**((i-1)/2)/factorial(i),x = 0,1..9,2) -- truncated sin(x) -- interpretor needs help here series(i +-> (-1)**((i-1)/2)/factorial(i),x = 0,1..9/1,2) -- truncated sin(x) series(j +-> j,x = 8,-4/3..,1/2) series(j +-> j,x = 8,-4/3..1/6,1/2) -- same computations using expressions instead of functions series(1/factorial(n),n,x = 0) -- expansion of exp(x) at x = 0 series((-1)**(n-1)/n,n,x = 1,1..) -- expansion of log(x) at x = 1 series((-1)**(n-1)/n,n,x = 1,1..6) -- truncated expansion of log(x) series(m**2,m,x = 7,-2..) -- infinite Laurent expansion series(m**2,m,x = 7,-2..5) -- finite Laurent expansion series((-1)**((i-1)/2)/factorial(i),i,x = 0,1..,2) -- sin(x) at x = 0 series((-1)**(i/2)/factorial(i),i,x = 0,0..,2) -- cos(x) at x = 0 -- series((-1)**((i-1)/2)/factorial(i),i,x = 0,1..9,2) -- truncated sin(x) -- interpretor needs help here series((-1)**((i-1)/2)/factorial(i),i,x = 0,1..9/1,2) -- truncated sin(x) series(j,j,x = 8,-4/3..,1/2) series(j,j,x = 8,-4/3..1/6,1/2) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}