\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input fr.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1991. @ <<*>>= <<license>> -- Manipulation of factored integers )clear all (x,y,z,w): FR INT -- automatic coercion of integers to factored integers x := 2**8 * 78**7 * 111**3 * 74534 y := 2**4 * 45**3 * 162**6 * 774325 -- computation of 50! z1 := factorial 50 z := z1 :: (FR INT) -- examine the structure if a factor nthFactor(z,1) nthFlag(z,1) nthExponent(z,1) -- extract the factors in another form factorList z -- construct an object that has the factors to multiplicity one r:=reduce(*,[(nthFactor(z,i) :: (FR INT)) for i in 1..(numberOfFactors z)]) -- some arithmetic exquo(z,r) x*y y*x (x*y = y*x) :: BOOLEAN gcd(x,z) x+y -- this is how you multiply the terms together expand(x+y) -- now look at quotients f := x/y g := (x ** 9) / y f * g (f * g) / (g * primeFactor(2,200)) (f * g) / (g * primeFactor(2,200)) * z --% Manipulation of factored polynomials )clear all )set history on (u,v,w): FR POLY INT -- coercion to FR POLY INT involves factoring u := (x**4 - y**4) :: POLY INT -- primeFactor creates factors that are asserted to be prime v := primeFactor(x-y,2) * primeFactor(x+y,2) * primeFactor(x**2 + y**2,1) w := factor(x**2 + 2*x*y + 2*x + 2*y + y**2 + 1) * primeFactor(x-y,2) unit w -- some ways of looking at the components of an elements of FR P I l := factorList u factorList v factorList w l.1.fctr l.1.xpnt nthFactor(u,1) nthFactor(u,2) nthFactor(u,3) nthExponent(u,3) nthFlag(u,3) nthFactor(u,4) -- this computes a factored object that is similar to v except that -- each factor occurs with multiplicity 1 s:=reduce(*,[(nthFactor(v,i) :: FR POLY INT) for i in 1..(numberOfFactors v)]) -- some arithmetic exquo(v,s) gcd(u,v) u + v lcm(v,w) u * v * w -- "expand" multiplies the factors together expand(u * v * w) -- some quotients u/w w/(u*v) -- %%(-1) is the last result, %%(-2) is the one before that w/(u*v) * u/w w/(u*v) + u/w differentiate(w,x) differentiate(w,y) associates?(x,-x) characteristic()$FR POLY INT 1$FR POLY INT 0$FR POLY INT @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}