\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input fixed.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1996. @ <<*>>= <<license>> --fixed.input ------------------------------------------------------------------- -- daly/10/06/92 ------------------------------------------------------------------- )clear all -- something is wrong with the integration of serices, when the -- coeffiennts are not constants. while the series is mathematically -- correct, this is not what one expects as the taylor series, which -- does not exist. series(x/(x+log(x))) -- here integrate is treating log(x) as a constant, which is incorrect. integrate(%) ------------------------------------------------------------------- -- bmt/10/19/92 integrate problem -- serious, wrong answer ------------------------------------------------------------------- )clear all 2*sin(t)*sqrt(1+cos(t)) --correct answer is 2*sin(t)/sqrt(1+cos(t)) integrate(%,t) ------------------------------------------------------------------- -- bmt/10/20/92 multiple complex in type tower ------------------------------------------------------------------- )clear all n:Complex ? -- an invalid type. can't have 2 complex constructors in a tower n:=x/y+%i ------------------------------------------------------------------------- -- grabm/09/28/92 coercion bug -- comment: this coercion must carefully check whether there is a symbol -- among the kernels which is equal to an indeterminate of the -- polynomial ring, and not simply considering every expression -- as a constant ------------------------------------------------------------------------- )clear all f:=(a-b-c-d)**2::EXPR INT f::DMP(['a,'b],EXPR INT) degree % ------------------------------------------------------------------- -- bmt/10/26/92 wrong answer -- comment:I believe this problem simplifies to -- lfintegrate(sqrt(u**3+u**2),u) which returns the -- wrong answer due to some confusion in prootintegrate in INTPAF. -- I think the confusion happens with the use of radPoly and rootPoly. -- The answer is computed with respect to the result returned by rootPoly -- but the kernel which is substituted for "y" corresponds to radPoly. ------------------------------------------------------------------- )clear all -- should be 2*sin(t)/sqrt(1+cos(t)) integrate(sqrt(1+cos(x)),x) ------------------------------------------------------------------- -- bmt/09/28/92 bug in ITRIGMNP -- gives: -- Cannot convert kernel to gaussian function ------------------------------------------------------------------- )clear all integrate(exp(x**2),x) ------------------------------------------------------------------- -- themos/11/06/92 integration bug --comment: --I suggest changing line 11 of limitedLogs in INTTR from: -- rows := max(degree den, 1 + "max"/[degree(u.contrib) for u in l1]) --to: -- rows := max(degree den, -- 1 + reduce(max,[degree(u.contrib) for u in l1],0)$List(N)) --Does you agree, thus max/ empty list would return 0. ------------------------------------------------------------------- )clear all f:=log(1-(b*x/(a+c*x**2)))/x -- 2 -- c x - b x + a -- log(--------------) -- 2 -- c x + a -- (1) ------------------- -- x integrate(%,x) -- 2 -- %J c - %J b + a -- log(---------------) -- x 2 -- ++ %J c + a -- (2) | -------------------- d%J -- ++ %J expand f -- 2 2 -- - log(c x + a) + log(c x - b x + a) -- (3) ------------------------------------- -- x integrate(%,x) -- >> Error detected within library code: -- No identity element for reduce of empty list using operation -- max ------------------------------------------------------------------- -- bmt/11/17/92 interpreter resolve problem ------------------------------------------------------------------- -- says cannot find an appropriate * )clear all %i/m*sqrt(m) ------------------------------------------------------------------------- -- tpd/09/22/92 this generates extra brackets ------------------------------------------------------------------------- )clear all foo n == matrix[[i for i in 1..n] for j in 1..n] foo ------------------------------------------------------------------------- --- tpd/09/24/92 matrix multiplication appears broken in the product. -- fails with -- >> System error: -- The function |deleteAssoc| is undefined. -- You are being returned to the top level of the interpreter. -- comment: (barry) -- This bug is due to the new autoloading scheme for the compiler, the -- function deleteAssoc needs to be moved into the in core system. -- As a work around, -- if you compile a non existent file, the apropriate files will be loaded, -- e.g.: -- )co foo -- comment: this works in version 2 ------------------------------------------------------------------------- msq := Matrix SquareMatrix(2,POLY INT) m : msq := zero(2,2) m(1,1) := matrix([[1,2],[a,b]]) m(1,2) := matrix([[a,b],[2,b]]) m(2,2) := matrix([[1,2],[2,b]]) m m*m m**2 m**3 (m*m)*m mm:=m*m mm*m ------------------------------------------------------------------------- -- tpd/09/25/92 new equation.spad from johannes grabmeier ------------------------------------------------------------------------- --Furthermore, we have function to put 0 or 1 on one side --and factor the left hand side, after the right hand side --is 0 and we have an IntegralDomain. --Johannes eq1 := (-6*x**3+13*x**2+4)=(-x**4+12*x) -- -- -- 3 2 4 -- (1) - 6x + 13x + 4= - x + 12x -- Type: Equation Polynomial Integer -- Time: 1.61 (IN) + 1.47 (OT) = 3.08 sec eq2 := x**4+13*x**2-12*x = 6*x**3-4 -- -- -- 4 2 3 -- (2) x + 13x - 12x= 6x - 4 -- Type: Equation Polynomial Integer -- Time: 0.16 (IN) + 0.11 (OT) = 0.27 sec eq := eq1*y**2+eq2 -- -- -- 3 2 2 4 2 4 2 3 -- (3) (- 6x + 13x + 4)y + x + 13x - 12x= (- x + 12x)y + 6x - 4 -- Type: Equation Polynomial Integer -- Time: 0.26 (IN) + 0.01 (EV) + 0.01 (OT) + 1.54 (GC) = 1.82 sec swap % -- -- -- 4 2 3 3 2 2 4 2 -- (4) (- x + 12x)y + 6x - 4= (- 6x + 13x + 4)y + x + 13x - 12x -- Type: Equation Polynomial Integer -- Time: 0.07 (OT) = 0.07 sec % + 4 -- -- -- 4 2 3 3 2 2 4 2 -- (5) (- x + 12x)y + 6x = (- 6x + 13x + 4)y + x + 13x - 12x + 4 -- Type: Equation Polynomial Integer -- Time: 0.69 (IN) + 0.01 (OT) = 0.70 sec %-6*x**3 -- -- -- 4 2 3 2 2 4 3 2 -- (6) (- x + 12x)y = (- 6x + 13x + 4)y + x - 6x + 13x - 12x + 4 -- Type: Equation Polynomial Integer -- Time: 0.19 (IN) + 0.01 (OT) = 0.20 sec leftZero % -- -- -- 4 3 2 2 4 3 2 -- (7) 0= (x - 6x + 13x - 12x + 4)y + x - 6x + 13x - 12x + 4 -- Type: Equation Polynomial Integer -- Time: 0.01 (IN) + 0.05 (OT) = 0.06 sec swap % -- -- -- 4 3 2 2 4 3 2 -- (8) (x - 6x + 13x - 12x + 4)y + x - 6x + 13x - 12x + 4= 0 -- Type: Equation Polynomial Integer -- Time: 0.01 (IN) = 0.01 sec factor lhs % -- -- -- 2 2 2 -- (9) (x - 2) (x - 1) (y + 1) -- Type: Factored Polynomial Integer -- Time: 0.50 (IN) + 0.09 (EV) + 0.30 (OT) = 0.89 sec factorAndSplit eq -- -- -- 2 -- (10) [x - 2= 0,x - 1= 0,y + 1= 0] -- Type: List Equation Polynomial Integer -- Time: 0.09 (EV) + 0.21 (OT) = 0.30 sec inv (eq :: EQ FRAC POLY INT) -- -- -- 1 1 -- (11) - ------------------------------------= - ---------------------- -- 3 2 2 4 2 4 2 3 -- (6x - 13x - 4)y - x - 13x + 12x (x - 12x)y - 6x + 4 -- Type: Equation Fraction Polynomial Integer -- Time: 0.03 (IN) = 0.03 sec - % -- -- -- 1 1 -- (12) ------------------------------------= ---------------------- -- 3 2 2 4 2 4 2 3 -- (6x - 13x - 4)y - x - 13x + 12x (x - 12x)y - 6x + 4 -- Type: Equation Fraction Polynomial Integer -- Time: 0.01 (IN) + 0.01 (OT) = 0.02 sec ------------------------------------------------------------------- -- bmt/09/29/92 coercion bug -- fails with: -- failed cannot be coerced to mode -- (Record (: coef1 (Integer)) (: coef2 (Integer))) -- fixed on 09/29/92 ------------------------------------------------------------------- )clear all (p,q):UP(x,INT) p:=3*x**4+11*x**2-4 q:=9*x**4+9*x**2-4 myNextPrime: (INT,NNI) -> INT myNextPrime(x,n)==nextPrime(x)$PRIMES(INT) -- runs forever due to algebra bug in handling leading coefficients modularGcd([p,q])$InnerModularGcd(INT,UP(x,INT),67108859,myNextPrime) ------------------------------------------------------------------- -- dewar/10/02/92 -- actually, this was never wrong ------------------------------------------------------------------- numeric(%e ** %pi) --gives (61) -- 23.1406926327 7926900563 5493084578 4861294789 0532254433 2912200665 -- 6744971913 2534837468 7163222983 2730035 ------------------------------------------------------------------- -- themos/10/07/92 ------------------------------------------------------------------- )clear all y:=operator 'y deqx:=differentiate(y(x),x,2)+differentiate(y(x),x)+y(x) solve(deqx,y,x) solve(deqx,y,x=0,[1]) deqt:=differentiate(y(t),t,2)+differentiate(y(t),t)+y(t) solve(deqt,y,t) solve(deqt,y,t=0,[1]) -- bug deqz:=differentiate(y(z),z,2)+differentiate(y(z),z)+y(z) solve(deqz,y,z) solve(deqz,y,z=0,[1]) --bug ------------------------------------------------------------------- -- themos/10/07/92 equation ------------------------------------------------------------------- )clear all y:=operator 'y deq:=D(y(x),x)+x**2=(y x)/x-(y x)**2 ------------------------------------------------------------------- -- bmt/10/08/92 laplace ------------------------------------------------------------------- )clear all laplace(exp(-x**3)*x**7,x,s) ------------------------------------------------------------------- -- bmt/09/30/92 nonlinear ODE ------------------------------------------------------------------- -- Any hope of solving the following which appeared in Barry -- Simon's computer algebra test suite: -- (Apparently it has Bernoulli form) y:=operator 'y x**2 * D(y x, x) + 2*x*(y x) - (y x)**3 = 0 solve(%,y,x) ------------------------------------------------------------------- -- sit/10/08/92 factor bug ------------------------------------------------------------------- p:POLY FRAC INT := 3*(x+1) -- is wrong (missing factor of 3). factor(p)**2 ------------------------------------------------------------------- -- henderson/10/08/92 ------------------------------------------------------------------- )clear all --TextFile cliams that the operator readLineIfCan! returns "failed" when --the end of the file is reached. In fact, I get a system error, which is --not very useful: --(16) ->readLineIfCan!(fp) -- >> System error: -- Unexpected end of #<input stream "/home/mcd/work/work">. -- You are being returned to the top level of the interpreter. fout:TextFile:=open("/tmp/foo","output") write!(fout,"foo") close!(fout) fin:TextFile:=open("/tmp/foo","input") readLineIfCan!(fin) readLineIfCan!(fin) close!(fin) )lis (system "rm /tmp/foo") ------------------------------------------------------------------- -- bmt/10/08/92 factoring over SAEs ------------------------------------------------------------------- )clear all a | a**2+1 (x+a)*(x+a+1) factor % ------------------------------------------------------------------- -- miller/10/09/92 local vars in types ------------------------------------------------------------------- )clear all --Fixed (Victor's) bug with using local variables in type expressions --assigned to local variables. It now gives a message and correctly uses --interpret-only mode. --The function changed was getAndEvalConstructorArgument from i-spec1.boot. ------------------------------------------------------------------- -- themos/10/19/92 ------------------------------------------------------------------- )clear all -- Do this in a virgin system )set expose add constructor SquareMatrix S2:= SquareMatrix(2,FRAC POLY INT) V2: S2 := matrix([[v,-v],[-v,v]]) I2: S2 := 1 m:=5 l: List(S2) := append(cons(V2+h*I2,_ [(V2+2*h*I2) for i in 2 .. (m-1)]),_ [V2+h*I2]) A: SquareMatrix(m, S2) := diagonalMatrix(l) -- did you get an error of deleteAssoc not defined ?? -- load definition of deleteAssoc )li (load "/spad/obj/rios/interp/c-util") A: SquareMatrix(m, S2) := diagonalMatrix(l) --now , can print. ------------------------------------------------------------------- -- bmt/10/19/92 squareFree bug ------------------------------------------------------------------- -- has an extra factor of 2. squareFree((2*x*y+1)*(x*y+1)**2) ------------------------------------------------------------------- -- bmt/10/19/92 division by zero error ------------------------------------------------------------------- limit(atan(1/sin(x)),x=0) ------------------------------------------------------------------- -- bmt/10/19/92 limit problem ------------------------------------------------------------------- )clear all -- the left and right hand limits don't agree limit(atan(-sin(x)/(cos(x)+e)),x=acos(-e)) -- the left and right hand limits don't agree limit(atan(1/(cos(x)+e)),x=acos(-e)) ------------------------------------------------------------------- -- grabmeier/10/19/92 unable to compute the determinant of an 8x8 ------------------------------------------------------------------- )clear all D := MATRIX FRAC(POLY INT) d : (INT, Boolean) -> POLY INT d(i,ss) == ex := i rem 4 if ex < 0 then ex := ex+4 ss => ex = 0 => 's ex = 1 => 'sd ex = 2 => 'sdd 'sddd ex = 0 => 1 ex = 1 => 'd ex = 2 => 'dd 'ddd -- 1,d,dd,ddd,s,sd,sdd,sddd mTV4 : D := new(8,8,0) for i in 1..8 repeat for j in 1..8 repeat mTV4(i,j) := i <= 4 => j <= 4 => d(i+j-2, false) d(-i+j,true) j <= 4 => d(i+j-2,true) d(-i+j,false) mTV4 gdd4 := determinant mTV4 ------------------------------------------------------------------- -- sutor/09/28/92 operator bug? ------------------------------------------------------------------- )clear all L n == n = 0 => 1 n = 1 => x (2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2) dx:=operator("D")::OP(POLY FRAC INT) evaluate(dx,p+-> differentiate(p,'x)) E n == (1-x**2)*dx**2-2*x*dx+n*(n+1) L 15 -- used to fail on this line E 15 ------------------------------------------------------------------- -- bmt/10/12/92 EFSTRUC recursion problem ------------------------------------------------------------------- )clear all bug:=(1+x**(1/4))**(1/3)/(x**(1/2)) -- gives a value stack overflow integrate(bug,x) -- seems to go into infinite recursion in rischNormalize ------------------------------------------------------------------- -- james/10/28/92 coerce bug ------------------------------------------------------------------- )clear all -- improper character in Roman numeral: G g::ROMAN ------------------------------------------------------------------- -- grabm/10/28/92 runs forever ------------------------------------------------------------------- )clear all -- this is quick factor 1068303355883998767544567663620885466990173600 -- but this runs forever sqrt 1068303355883998767544567663620885466990173600 ------------------------------------------------------------------- -- themos/11/05/92 fortran output bug ------------------------------------------------------------------- )clear all -- REAL T7,T6,T5,T4,T3,T2,T1 -- T1=x*x -- T2=2.*y**5 -- T3=4.*T1 -- T4=y**3 -- T5=2.*T7 -- T6=x**3 -- T7=x**4 -- R46=((T2+(T3+8.*x+8.)*T4+(T5+8.*T6+(-40.*T1))*y)*SIN(x)+(-T2+(-T3+ -- &16.*x)*T4+(-T5+16.*T6)*y)*COS(x))/(y**8+4.*T1*y**6+6.*T7*y**4+4.*x -- &**6*y*y+x**8) -- T7 is referenced before it is defined a1:=sin(x)/(x**2+y**2);a2:=D(a1,[x,y]);a2+D(a2,x) ------------------------------------------------------------------- -- grabm/11/05/92 -- comment: --I believe the "bug" is that the interpreter is converting gb which is --a list of dmp style polynomials to a list of POLY type polynomials. --Unfortunately the result of such a conversion is no longer a groebner basis. --I don't see any reasonable way to prevent this, and would therefore have to --classify this as "user error", when working with grobner bases, the user --needs to force all his polynomials to be the appropriate type (thus having --the correct ordering). ------------------------------------------------------------------- -- expressing a symmetric functions in terms of elementary symm. functions -- working in POLY INT is o.k. R := FRAC INT -- (1) Fraction Integer lpx : List POLY R := [x1+x2+x3, x1*x2+x1*x3+x2*x3,x1*x2*x3] -- (2) [x3 + x2 + x1,(x2 + x1)x3 + x1 x2,x1 x2 x3] lip := [lpx.1-e3, lpx.2-e2, lpx.3-e1] -- (3) [x3 + x2 + x1 - e3,(x2 + x1)x3 + x1 x2 - e2,x1 x2 x3 - e1] gbp := groebner lip -- (4) -- 2 2 -- [x3 + x2 + x1 - e3, x2 + (x1 - e3)x2 + x1 - e3 x1 + e2, -- 3 2 -- x1 - e3 x1 + e2 x1 - e1] normalForm(x1**2+x2**2+x3**2,gbp) -- 2 -- (5) e3 - 2e2 -- working in DMP is o.k. dmp := DMP([x1,x2,x3,e1,e2,e3],INT) -- (6) DistributedMultivariatePolynomial([x1,x2,x3,e1,e2,e3],Integer) li : List dmp := [lpx.1-e1, lpx.2-e2, lpx.3-e3] -- (7) [x1 + x2 + x3 - e1,x1 x2 + x1 x3 + x2 x3 - e2,x1 x2 x3 - e3] gb := groebner li -- (8) -- 2 2 -- [x1 + x2 + x3 - e1, x2 + x2 x3 - x2 e1 + x3 - x3 e1 + e2, -- 3 2 -- x3 - x3 e1 + x3 e2 - e3] p:dmp:=(x1**2+x2**2+x3**2) -- 2 2 2 -- (9) x1 + x2 + x3 normalForm(p,gb) -- 2 -- (10) e1 - 2e2 -- but we have some problems (coercion? ordering?) here: normalForm(x1**2+x2**2+x3**2,gb) -- 2 2 2 -- (11) 2x2 + (2x1 - 2e1)x2 + 2x1 - 2e1 x1 + e1 ------------------------------------------------------------------- -- bmt/11/17/92 Ifintegrate ------------------------------------------------------------------- --It seems that one cannot simply parametrize reducible curves. --Any attempt at parametrization can only follow one branch. --For curves of the form y**2=a**2*x**2+b*x+c, these are only reducible --if a**2*x**2+b*x+c is a perfect square. Basically I think we need to --choose 1 branch in this case. Under some circumstances we could --try to proceed down both branches and then unify the result, but for --the time being, perhaps we should just perform the substitution --y=sqrt(a**2*x**2+b*x+c) whenever that is a perfect square. --(then we don't even need to do any back subsitution or change to dx). -- --For another example, perhaps due to the same essential difficulty try integrate(normalize(sqrt(1+cos(x)),x),x) -- this gets a non-invertible error --I have fixed integrate(sqrt(1+cos(x)),x) and --integrate(normalize(sqrt(1+cos(x)),x),x) --fix was to function prootintegrate in INTPAF in intaf.spad ------------------------------------------------------------------- -- james/02/11/93 integrate -- used to give error: -- No identity element for reduce of empty list using operation -- max ------------------------------------------------------------------- integrate(((-x-1)*log((x**2+x))**2+2*log(x))/(x+1),x) ------------------------------------------------------------------- -- dewar/02/15/93 ------------------------------------------------------------------- )clear all --i::Polynomial(Integer) --%::Union(Symbol,Polynomial Integer) --list % -- --this is a bug in old style union handling, this style of unions --will become obsolete, so the suggested fix is to use tagged unions instead: i::POLY INT %::Union(s:Symbol, p:POLY INT) list % -- works ------------------------------------------------------------------- -- grabm/03/04/93 -- parser bug? not for system commands ------------------------------------------------------------------- )clear all -- gives error: Sorry, but no option begins with upd; )load /spad/mnt/rios/algebra/EQ )upd; a:=1 -- works )load /spad/mnt/rios/algebra/EQ )upd ; a:=1 ------------------------------------------------------------------- -- bronstein/03/08/93 ------------------------------------------------------------------- )clear all I:=operator 'I J:=operator 'J eq := mu * D(I x,x) = - (K + S) * I(x) + S*J(x) solve(eq,I,x) --> wrong particular solution ------------------------------------------------------------------- -- dewar/03/16/93 -- bug writing backslash to files --comment: --This is not a bug, what is written to the file is the lisp representation --of the string "\\test" (since '\' is lisp escape character). --The file is read and written using lisp primitives and thus the escape --characters need to be doubled. This is consistent, since if you read the --item back in from the file, the correct string is reconstituted. -- --If you want to create a text file which simply contains lines of text --instead of lines of lisp strings, use: --ofile : TextFile := open("test","output") ... --then you will get a file of literal strings with no string delimiters and --no escape characters. ------------------------------------------------------------------- )clear all ofile: File String := open("/tmp/test","output") -- this writes "\\\\test" but should write "\\test" write!(ofile,"\\test"::String) close! ofile ------------------------------------------------------------------- -- themos/04/07/93 -- this sometimes fails -- comment: --thanks for tracing down the problem. Basically the lines for monicizing --the result need to be done before we try to --retract back from the algebraic extension. ------------------------------------------------------------------- )clear all pol:DMP([x,y,z],PF(2)):=x**2*y**2+x**2*y*z+x**2*z**2+x*y*z**2+y**3*z+y*z**3 factor pol ------------------------------------------------------------------- -- williamson/04/21/93 -- comment: --I ran into some problems when factoring polynomials over number fields. --Evidently the interpretor doesn't choose the correct function 'factor'. --It uses a function from MULTFACT, when it should be using a function from --SAEFACT. ------------------------------------------------------------------- )clear all up := UP('w,FRAC INT) p : up := w**4 + w**3 + w**2 + w + 1 sae := SAE(FRAC INT,up,p) q : UP('x,sae) := x**5 - 1 factor q -- used to report: x**5-1 saefact := SAEFACT(up,sae,UP('x,sae)) factor(q)$saefact ------------------------------------------------------------------- -- grabm/04/30/93 -- comment: --This bug has been fixed at yorktown, in radix.spad, change line 163, the --third line of intgroup to be: -- empty? rest li => intToExpr first(li) --and then recompile RADIX ------------------------------------------------------------------- )clear all -- results in 10 and not A 10::RadixExpansion(16) ------------------------------------------------------------------- -- bronstei@inf.ethz.ch (manuel bronstein) ------------------------------------------------------------------- )clear all r:=rule 'x == 1 -- used to return x, now returns 1 r x ------------------------------------------------------------------- -- ADK@scri.fsu.edu (tony kennedy) ------------------------------------------------------------------- )clear all factor(-12) %**2 ------------------------------------------------------------------- -- bronstei@inf.ethz.ch (manuel bronstein) -- >> Error: cannot retract nonconstant polynomial ------------------------------------------------------------------- )clear all complexNumeric(log(sqrt(-3))) ------------------------------------------------------------------- -- quitte@knuth.univ-poitiers.fr/8/15/93 (Claude Quitte) ------------------------------------------------------------------- )clear all --)abbreviation package TEST Test -- --Test() : with -- -- leftProductBy : Integer -> (Integer -> Integer) -- rightProductBy : Integer -> Mapping(Integer, Integer) -- -- == add -- -- leftProductBy(n) == n * #1 -- -- rightProductBy(n : Integer) : Mapping(Integer, Integer) == #1 * n -------------------------------------------------------------------------- -- --Why is it impossible to specify the target/cible types for the --functions leftProductBy and rightProductBy in the body of the package ??? -- --The code for leftProductBy is correct but the code for rightProductBy --troubles the compiler !!!! It seems to compile a LOCAL function with --ANOTHER signature. -- -------------------------------------------------------------------------- -- initializing NRLIB TEST for Test -- compiling into NRLIB TEST -- compiling exported leftProductBy : Integer -> Integer -> Integer --Time: 0.35 SEC. -- -- compiling local rightProductBy : Integer -> Integer --****** comp fails at level 2 with expression: ****** --error in function rightProductBy -- --****** level 2 ****** --$x:= #1 --$m:= $EmptyMode --$f:= --((((|n| # #) (|rightProductBy| # # #) (|n| #) (|rightProductBy| # # #) ...))) -- -- >> Apparent user error: -- no mode found for -- #1 -- You are being returned to the top level of the interpreter. ------------------------------------------------------------------------ -- answer (barry): -- --Your problem in TEST about specifying target types which are Mapping's --was a bug in the compiler and has been fixed for OpenAxiom release 2.0. -- ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/10/6/93 (Manuel Bronstein) ------------------------------------------------------------------- )clear all --Here is algfunc.spad with an old bug fixed: eventh-roots of negative floats --coerced to EXPR FLOAT (e.g. sqrt(-1::EXPR FLOAT)) used to produced an error --message since the sqrt from FLOAT was called. --I have now fixed iroot from AF(R,) --to call the sqrt from R only if either R is algebraically closed, or the --root is odd, or the argument is positive. Here's the new behaviour: sqrt(-1::EXPR FLOAT) sqrt(2::EXPR FLOAT) nthRoot(-2::EXPR FLOAT, 3) nthRoot(-2::EXPR FLOAT, 4) --As a side-effect, this fixes the problem with numeric -- (which was instantiating sqrt(-1)$EXPR(FLOAT)). ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/10/6/93 (Manuel Bronstein) ------------------------------------------------------------------- )clear all --Here is an updated efstruc.spad where ker2trigs now knows about abs. real abs(4 + %i * 5) -- does the right thing. ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/10/5/93 (Manuel Bronstein) ------------------------------------------------------------------- )clear all --Here is again an enhanced elemntry.spad. What happens now is that exp(q * %i * %pi) --gets automatically simplifed whenever q is a rational number whose --denominator is one of {1,2,3,4,6}. exp(5/3*%i*%pi) ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/10/4/93 (Manuel Bronstein) -- luczak@nag.com (Richard Luczak) ------------------------------------------------------------------- )clear all exp(log(-1)) sum((-1)**k * (k+m),k=0..n) ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/10/4/93 (Manuel Bronstein) ------------------------------------------------------------------- )clear all --simplifies (abs now checks quotients instead of just retraction to R). abs((1/2)::EXPR(INT)) ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/10/4/93 (Manuel Bronstein) ------------------------------------------------------------------- )clear all integrate(1/(x**2 + %i*a),x) ------------------------------------------------------------------- -- bmt@spadserv.watson.ibm.com/9/28/93 (Barry Trager) ------------------------------------------------------------------- )clear all limit(1/2**n,n=%plusInfinity) ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/9/22/93 (Manuel Bronstein) ------------------------------------------------------------------- )clear all --Here is an update to efstruc.spad that handles complex constants much better. --Negative square roots and negative logs are now recognized as complex and --treated properly by real?, real, imag, and complexForm: x := sqrt(-3) + sqrt 2 + sqrt(- exp a) + log(-a**2-1) real? x real x imag x --As a result, integrals involving sqrt(-2) etc... are now treated correctly --(this was the case only for sqrt(-1) with the older version). ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/9/22/93 (Manuel Bronstein) ------------------------------------------------------------------- )clear all -->> haha := rule x*x == z -->> haha(a*a + b*b + c**2) --> 3z -->> haha(a*a + b*b + c**2 + d*d) --> z -->> -->> the bug is that the last line returns z instead of 4z. -- --Sorry guys, this is not a bug: haha is so general a rule that it matches --the integer 4 (as 2 squared), so the rewrite chain for the last example is: -- --a*a + b*b + c**2 + d*d ---> z + z + z + z = 4 * z ---> z * z ---> z -- --Here is a console showing what exactly happens: haha := rule x*x == z haha 4 haha 3 haha(4*z) haha(3*z) --To see the whole rewrite chain: a*a + b*b + c**2 + d*d applyRules([haha], %, 1)$APPRULE(INT,INT,EXPR INT) applyRules([haha], %, 1)$APPRULE(INT,INT,EXPR INT) applyRules([haha], %, 1)$APPRULE(INT,INT,EXPR INT) --I think it's actually the proper behavior for the pattern matcher. This --example shows that rules can bite, something Mma users are quite aware about! ------------------------------------------------------------------- -- dewar/9/16/93 (mike dewar) ------------------------------------------------------------------- --There's an odd discontinuity about the behaviour of the following --function: harm(1) == 1 harm(n) == harm(n-1) + 1/n harm : Integer -> Fraction Integer harm(1023) -- takes a little while, as expected harm(1024) -- takes forever? ------------------------------------------------------------------- -- williams@inf.ethz.ch/9/1/93 (Clifton Williamson) ------------------------------------------------------------------- --> we should probably support integrate(%,x) on series types. --> x could be either the variable of expansion or a parameter variable. -- --We've discussed this before with regard to the function 'differentiate'. --The technical problem is that "generalized" power series may have --"coefficients" involving the series variable: series(x**x,x=0) --In this case, as currently implemented, 'differentiate' returns incorrect --answers: )set mess test off differentiate % )set mess test on --The solution we discussed (perhaps "resolution" is a better word) was to --create a separate series type for generalized series. This would be a --carbon copy of UPXS, except that differentiate(series,variable(series)) and --integrate(series,variable(series)) would return an error message. The --error message could also suggest that the user first apply 'approximate', --then compute a derivative or integral. We would also have a coercion from --UPXS to this type. The function 'series' would return a UPXS, when the --coefficients do not involve the series variable, and a "generalized series", --when the coefficients involve the series variable. -- --If this sounds cool to you, I'll go ahead with it when I have time. (I'm --trying to meet a 16 September deadline for a MEGA '94 submission. I'm still --getting my results together, so time is tight. Let me know if there is a --time deadline for the AXIOM code!) -- --> Also we need better tools for taking finite truncations of series objects. --> In particular since we now mostly use series(expr,var) to create a series, --> UPXS if over a coefficient domain which supports the symbol of expansion, --> should be able to truncate a series to an EXPR. -- --I thought I had you on this one! The signature is there (in pscat.spad): -- -- if Coef has coerce: Symbol -> Coef then -- if Coef has "**":(Coef,Expon) -> Coef then -- approximate: ($,Expon) -> Coef -- ++ \spad{approximate(f)} returns a truncated power series with the -- ++ series variable viewed as an element of the coefficient domain. -- --It certainly works for Laurent series: laurent(cos(a+x)/x,x=0) approximate(%,3) --But, unfortunately, I never implemented it for Puiseux series: puiseux(cos(a+x)/x,x=0) approximate(%,3) series(cos(x**(2/3) + a),x=0) approximate(%,2) approximate(%% 1,7/5) ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/10/6/93 (manuel bronstein) ------------------------------------------------------------------- )clear all )set message type off -- Here is algfunc.spad with an old bug fixed: eventh-roots of negative floats -- coerced to EXPR FLOAT (e.g. sqrt(-1::EXPR FLOAT)) used to produced an error -- message since the sqrt from FLOAT was called. -- I have now fixed iroot from AF(R,) -- to call the sqrt from R only if either R is algebraically closed, or the -- root is odd, or the argument is positive. Here's the new behaviour: sqrt(-1::EXPR FLOAT) sqrt(2::EXPR FLOAT) nthRoot(-2::EXPR FLOAT, 3) nthRoot(-2::EXPR FLOAT, 4) --As a side-effect, this fixes the problem with numeric -- (which was instantiating sqrt(-1)$EXPR(FLOAT)). ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/9/22/93 (manuel bronstein) ------------------------------------------------------------------- )clear all --Here is a (rather major) bug fix to ffactor in FSUPFACT.NRLIB. It causes --a large family of integrals to return 0, because ffactor(?**2+expr) returned --?**2 when expr involved a parameter. This is fixed now. ------------------------------------------------------------------- -- jhd@maths.bath.ac.uk/8/15/93 James Davenport ------------------------------------------------------------------- )clear all integrate(1/(x*(log(x)**2+a**2-1)),x) -- (1) -- VCONCAT -- log(x) -- atan(---------) -- +------+ -- | 2 -- 2 \|a - 1 -- ((- a + 1<0) -> ---------------) -- +------+ -- | 2 -- \|a - 1 -- , -- PAREN -- 2 -- (- a + 1>0) -- -> -- +--------+ -- 2 2 | 2 2 -- log((log(x) - a + 1)\|- a + 1 + (2a - 2)log(x)) -- + -- 2 2 -- - log(log(x) + a - 1) -- / -- +--------+ -- | 2 -- 2\|- a + 1 -- , -- 1 -- ( Or (a - 1=0) -> - ------) -- (a + 1=0) log(x) -- Type: ConditionalExpression Integer -- --is still fairly ugly. ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/8/9/93 (manuel bronstein) ------------------------------------------------------------------- )clear all --Here is efstruc.spad with a change to normalize so that normalize(2**(1/2) + 2**(1/4)) now returns 2**(1/4) ** 2 + 2**(1/4). ------------------------------------------------------------------- -- satoshi@yktvmv.vnet.ibm.com/8/7/93 satoshi hamaguchi ------------------------------------------------------------------- )clear all -- In axiom, both integrate(%e**x,x=0..1) --and integrate(log(x),x=1..2) --yield a warning potentialPole . --If I use "noPole", they give right answers. Isn't this a bug? --... Satoshi ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/8/5/93 (manuel bronstein) ------------------------------------------------------------------- )clear all simplify(2**(1/3)*2**(1/2)) -- will return 2**(5/6). ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/8/4/93 (manuel bronstein) ------------------------------------------------------------------- )clear all integrate(1/sqrt(1+cos(x)), x) ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/8/4/93 (manuel bronstein) ------------------------------------------------------------------- )clear all normalize atan(cos(x)/sin(x)) -- used to be division by 0 error ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/8/4/93 (manuel bronstein) ------------------------------------------------------------------- )clear all a := 2**(1/6) [a**n for n in 2..13] ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/8/4/93 (manuel bronstein) ------------------------------------------------------------------- )clear all int:=sqrt(a*(1-u**2)/(1+u**2))/u integrate(eval(int,a=1),u) -- works integrate(eval(int,a=sqrt(-1)),u) -- seems to run forever integrate(eval(int,a=1)*(-1)**(1/4),u) -- dies after a long time -- with an elt index error. ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/8/4/93 (manuel bronstein) ------------------------------------------------------------------- )clear all sqrt((1-x**2)*(1-k**2*x**2)) integrate(x/%,x) ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/7/26/93 (manuel bronstein) ------------------------------------------------------------------- )clear all rad:=last zerosOf((2+y)**8-3,y) k:=first kernels % eval(rad,k,rad) ------------------------------------------------------------------- -- nagttt@vax.ox.ac.uk/7/15/93 themos tsikas ------------------------------------------------------------------- )clear all f := (x - y) / (x + y) eval(f,x=1/x) ------------------------------------------------------------------- -- nagttt@vax.ox.ac.uk/7/15/93 themos tsikas ------------------------------------------------------------------- )clear all digits 200 --I claim that these two should give the same result (they do in Reduce): --(precision was 200) a:=4*sin(2*%pi/9)*sin(5*%pi/9)/sqrt(3) b:=1/(2*sin(%pi/9)) a::EXPR FLOAT b::EXPR FLOAT ------------------------------------------------------------------- -- bmt@spadserv.watson.ibm.com/9/15/93 (Barry Trager) ------------------------------------------------------------------- )clear all limit(tanh(x),x=%plusInfinity) ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/6/14/93 (manuel bronstein) ------------------------------------------------------------------- )clear all a := x::EXPR INT b := x::EXPR COMPLEX INT zeroOf(a**4+1,x) zeroOf(b**4+1,x) ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/6/11/93 (manuel bronstein) ------------------------------------------------------------------- )clear all normalize(0**a) -- now returns 0 (was crashing before) ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/6/11/93 (manuel bronstein) ------------------------------------------------------------------- )clear all - new export complexForm(f) which returns the rectangular complex form of f: log(a+%i * b) complexForm % complexIntegrate(1/(x-%i),x) complexForm % ------------------------------------------------------------------- -- jcf@posso.ibp.fr ------------------------------------------------------------------- -- normalForm est faux pour les polynomes a coef dans un anneau: D:=DMP([a,b],INT) l:List D:=[2*a-1,b-a] g:=groebner l p:D:=a normalForm(p,g) -- was 1 -- au lieu de 1/2 !! ------------------------------------------------------------------- -- nagttt@vax.ox.ac.uk/6/9/93 themos tsikas ------------------------------------------------------------------- )clear all squareFreePart(50) ------------------------------------------------------------------- -- mcd@maths.bath.ac.uk/6/4/92 mike dewar ------------------------------------------------------------------- )clear all f:=complexIntegrate(1/((x-%i)*(x-2*%i)),x) g:=subst(f,x=1) imag g ------------------------------------------------------------------- -- daly ------------------------------------------------------------------- )clear all -- not wrong but the order is obscure... primes(1,10) ------------------------------------------------------------------- -- nagttt@vax.ox.ac.uk/1/11/93 themos tsikas ------------------------------------------------------------------- )clear all m:=matrix[[1,a,0],[b,0,a],[0,b,c]] ll:=radicalEigenvectors m -- ends in error: -- Internal system problem in function appInfix : fewer than 2 arguments to -- an infix function -- -- but this works ll 1 ll 2 ll 3 ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/11/24/93 Manuel Bronstein ------------------------------------------------------------------- --)clear all --Here's a bug that appears with the )math option only. -- --)tr MATRIX )ops determinant )math -- -- Parameterized constructors traced: -- MATRIX -- this integrate is commented out since it runs forever (at least many hours) --integrate(sqrt(1/x+1)*sqrt(x)-sqrt(x+1),x) --1<enter Matrix.determinant,26 : -- -- Internal system problem in function appInfix : -- fewer than 2 arguments to an infix function ------------------------------------------------------------------- -- copper@yktvmv/12/1/93 Don Coppersmith ------------------------------------------------------------------- )clear all --Attached is the list of integers n such that 2**512-n is prime --and n is between 0 and 5000: -- -- 4893,4653,4475,4005,3893,3669,3459,3143,2967, -- 2807,2529,1827,1695,975,875,629,569 --It was gotten from OpenAxiom by issuing the commands qrimes : Stream Integer := generate(nextPrime,2**512-5000) rrimes := [ 2**512-p for p in qrimes while p < 2**512 ] srimes := complete rrimes [srimes.i for i in [1..18]] [srimes.i for i in [10..18]] ------------------------------------------------------------------- -- miker@num-alg-grp.co.uk/12/13/93 (Mike Richardson) ------------------------------------------------------------------- )clear all -- --This is fixed now. You get an Expression Float. -- --> --> I suspect that this is an example of the same thing - but it looks --> worse: --> --> (145) ->X := log(0.7*%i*x) --> --> >> Error detected within library code: --> negative root --> --> Mike --> ------------------------------------------------------------------- -- sutor@yktpub.watson.ibm.com/12/15/93 (Robert S. Sutor) ------------------------------------------------------------------- )clear all --enter Integer in input box --choose domains --choose Description --click on Convertible(String) -- --page cannot be formatted ------------------------------------------------------------------- -- bmt@posso.dm.unipi.it12/15/93 (barry trager) ------------------------------------------------------------------- )clear all log2() --> Float exp1() --> DoubleFLoat ??? ------------------------------------------------------------------- -- quitte@knuth.univ-poitiers.fr/12/14/93 Claude Quitte ------------------------------------------------------------------- )clear all --There is a bug in the function delete_! for the type List ; this function, --has two arguments, a list L and an integer n : delete_!(L, n) returns --a list L with the n nth-item deleted, MODIFYING its argument L. -- --But for n = 1, the argument L is not MODIFIED !!! (exactly for n = --minIndex(L)). An extract of the package ListAggregate (abbreviation LSAGG, --file aggcat.spad). -- -- ---------------------------------------------------------------------- --ListAggregate(S:Object): Category == Join(StreamAggregate S, -- FiniteLinearAggregate S, ExtensibleLinearAggregate S) with -- list: S -> $ -- ++ list(x) returns the list of one element x. -- add -- .......... -- -- delete_!(x:$, i:I) == -- i < (m := minIndex x) => error "index out of range" -- i = m => rest x ****** <- here is the error -- y := rest(x, (i - 1 - m)::N) -- setrest_!(y, rest(y, 2)) -- x -- --A little session : -- L : List(String) := ["There is", "it seems", "a real bug", "here"] -- (1) ["There is","it seems","a real bug","here"] -- Type: List String -- L1 := delete!(L, 1) -- (2) ["it seems","a real bug","here"] -- Type: List String L -- (3) ["There is","it seems","a real bug","here"] -- Type: List String -- L2 := delete!(L, 2) -- (4) ["There is","a real bug","here"] -- Type: List String L -- (5) ["There is","a real bug","here"] -- --Is there a way to fix this bug quickly ?? (I am ready to modify the source --OpenAxiom aggcat.spad). --The problem with ! functions lies in the documentation not in the code. We --need to explain more clearly that ! functions are ALLOWED to update their --arguments, not REQUIRED to do so. --Whenever using ! functions you should always --use the returned result, not try to use the updated argument. This is how --the code is designed. --For example if you try to do insert! into an empty list, --the argument is not updatable and thus a new list is created. The reason for --having ! operations is for efficiency to do less copying, not to guarantee --that given arguments will always be updated. So the correct use is to only --depend on the results returned by updating functions. ------------------------------------------------------------------- -- quitte@knuth.univ-poitiers.fr/1/13/94 Claude Quitte ------------------------------------------------------------------- )clear all K := Fraction(Integer) PolK := UP('X, K) X : PolK := monomial(1, 1) n : PositiveInteger := 15 E := SimpleAlgebraicExtension(K, PolK, X**n + X**(n-3) -1) y : E := X::E minimalPolynomial(y)$E -- --Internal Error --The function minimalPolynomial with signature SimpleAlgebraicExtension( --Fraction Integer,UnivariatePolynomial(X,Fraction Integer),X**15+X**12-1) ---> UnivariatePolynomial(X,Fraction Integer) is missing from domain --SimpleAlgebraicExtension(Fraction (Integer)) --(UnivariatePolynomial X (Fraction (Integer)))((15 1 . 1) (12 1 . 1) (0 -1 . 1)) ------------------------------------------------------------------- -- luczak@nag.com/02/20/94 (Richard Luczak) ------------------------------------------------------------------- )clear all -- --I'm trying to define the following rule -- tr := rule cos(x)**(n | integer? n and even? n)==(1-sin(x)**2)**(n/2) -- --OpenAxiom returns -- -- Cannot find a definition or library operation named even? with argument -- types -- Expression Integer -- -- We will attempt to step through and interpret the code. -- -- n -- - -- n 2 2 -- (2) cos(x) == (- sin(x) + 1) -- Type: RewriteRule(Integer,Integer,Expression Integer) -- -- --and henceforth the rule does not work as desired. Variations on the same bug --occur involving positive?. Of course, I get what I want using integer?(n/2) --but ... Is this a bug? -- -- from barry: -- --Should use integer? n and even? integer n instead. -- --I toyed with the idea of implementing: -- even? x == integer? x and even? integer x -- odd? x == integer? x and odd? integer x --in EXPR, but this would mean that (x +-> even? x or odd? x) is not always --true anymore and I'm not sure it's a good idea. If you guys don't think it's --a problem, it takes 2 minutes to add it to EXPR R when R has RETRACT INT --(don't use integer? but retractIfCan@Union(Integer, "failed")). ------------------------------------------------------------------- -- copper@yktvmv.vnet.ibm.com/02/22/94 don coppersmith ------------------------------------------------------------------- )clear all --Questions that came up using OpenAxiom on Aixproj: -- --How does one find a Pade approximation? I tried pade(2,2,y) --pade(y,2,2) Pade(2,2,y) PadeApproximation(2,2,y) --(where y is a series in x) to no avail. -- --Complaint: The error message -- -- Could not find library function "pade" with arguments -- (integer, integer, series). -- --is misleading. If it can't find any "pade", then say -- -- Could not find library function "pade". -- --If there is such a function, but I've got the arguments wrong, --why not say -- -- The library function "pade" takes arguments -- (series, integer, integer) -- --or at least make that information available somehow. -- -- from bob sutor: -- --Don, -- Try using )what op pade to see what is available. This will give --you all operations with "pade" in their names. You can also search for --*pade* via the HyperDoc Browse utility. If you don't use Browse, following --up with, say, )display op pade, will give you a more information, though --it is badly formatted (I will look at that). -- --Aixproj is back-level, so I'm not sure exactly what is up their --relative to the current system. -- --I agree we could use better messages regarding unknown functions --and I will look at that. -- Bob -- -- from bob sutor: -- --The pade operation requires a taylor series as its third object while --"series" returns a UnivariatePuiseuxSeries. If you set -- y := taylor(1+x)**(1/5) --then things work. You can also do -- pade(1,1,y :: UTS(EXPR INT, x, 0) ) --but this is more work if you really have a Taylor series. -- --This is unintuitive and there should be a "pade" for Puiseux series that --fails if the series is not appropriate. Barry? I will now look at adding --a bit more coercion support to the interpreter to allow Puiseux series --to possibly retract to Laurent series and then possibly to Taylor series. -- --Don, -- I added the retractions I mentioned before to the development system. --When the system is unsuccessful in matching a UnivariatePuiseuxSeries --to an operation, it will first try to retract it to a --UnivariateLaurentSeries. If that fails still, it will try to retract to --a UnivariateTaylorSeries. -- -- Be aware that this sort of thing happens when you are evaluating --an expression. If you are defining a function, you should add --explicit coercions or create objects of the correct type for --efficiency. You function may still work, but it may not run in --a compiled form. ------------------------------------------------------------------- -- barry@num-alg-grp.co.uk/02/24/94 Barry Trager ------------------------------------------------------------------- )clear all sqrt(2)*2.0 -- fails sqrt(2)::EXPR INT * 2.0 -- works -- tpd: this now fails with sample : () -> Reference Integer is missing -- from domain: Integer -- Internal Error ------------------------------------------------------------------- -- bronstei@inf.ethz.ch/02/28/94 Manuel Bronstein ------------------------------------------------------------------- )clear all f := exp(exp(x)*exp(1/exp(x))) / exp exp x --)tr LIMITPS )math --)tr DFINTTLS )math --)tr DFINTTLS_;findLimit -- the following exits back to the shell after limit returns "failed": computeInt(first tower f, f, 0, %plusInfinity, false)$DFINTTLS(INT, EXPR INT) ------------------------------------------------------------------- -- jhd@maths.bath.ac.uk/03/02/94 James Davenport ------------------------------------------------------------------- )clear all --I've fixed coercions of List and Vector to DirectProduct. --You can now do things like [1,2,3] :: DirectProduct(3, Fraction Integer) -- --I also fixed coercions from Vector to List, which seems to have --been removed via a library change. ------------------------------------------------------------------- -- jhd@maths.bath.ac.uk/03/09/94 James Davenport ------------------------------------------------------------------- )clear all -- used to give a lisp error x**10+1::Polynomial PrimeField 2 ------------------------------------------------------------------- -- themos@num-alg-grp.co.uk/03/11/94 Themos Tsikas ------------------------------------------------------------------- )clear all f(x)==x**2 draw(f,-1..1) ------------------------------------------------------------------- -- themos@num-alg-grp.co.uk/03/16/94 Themos Tsikas ------------------------------------------------------------------- )clear all --The problem was that nobody was around to catch the coerceOrCroaker. --Just comment out the first line of intCodeGenCoerce1 in i-code.boot --(the one with the explicit THROW). Bothe the riemannSphereDraw and JHD's --original example will then work. -- bob sutor )read conformal riemannSphereDraw(1..2,0..%pi,4,4,"polar") @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}