\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input elfuts.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994. @ <<*>>= <<license>> )cl all --demo of Jacobian elliptic functions expanded as power series )set streams calculate 10 )expose ELFUTS macro RN == FRAC INT macro QF == FRAC xx:UTS(RN,'x,0):=x sn(xx,1::RN) cn(xx,1::RN) dn(xx,1::RN) yy:UTS(FRAC UP(k,RN),'y,0):=y snn:=sn(yy,k::QF UP(k,RN)) cnn:=cn(yy,k::QF UP(k,RN)) dnn:=dn(yy,k::QF UP(k,RN)) snn**2+cnn**2 ksquared:=(k::UP(k,RN))**2 dnn**2+ksquared*snn**2 (differentiate snn)**2 (1-snn**2)*(1-ksquared*snn**2) (differentiate cnn)**2 (1-cnn**2)*(1-ksquared+ksquared*cnn**2) (differentiate dnn)**2 (1-dnn**2)*(dnn**2-1+ksquared) kkk:=integrate(1/((1-yy**2)*(1-ksquared*yy**2))**(1/2)) revert kkk snn -- Theta-functions expanded as power series --q0=*/[1-q**2*n for n in 1..] --q1=*/[1+q**2*n for n in 1..] --q2=*/[1+q**(2*n-1) for n in 1..] --q3=*/[1-q**(2*n-1) for n in 1..] eprod x==exp evenlambert log x qq:UTS(RN,'q,0):=q q0:=eprod(1-qq) q1:=eprod(1+qq) oprod x == exp oddlambert log x q2:=oprod(1+qq) q3:=oprod(1-qq) q1*q2*q3 q2**8-q3**8 16*qq*q1**8 --(q1**2/q2**2)**2 --(q3**2/q2**2)**2 q0**3 q1**2*q0 q2**2*q0 q3**2*q0 qqq:UTS(FRAC UP(a,RN),'q,0):=q a:=a::FRAC UP(a,RN) --Jacobi's triple product eprod(1-qqq)*oprod(1-a*qqq)*oprod(1-qqq/a) sq:=ksquared*snn**2 @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}