\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input eigen.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1991. @ <<*>>= <<license>> -- Computation of eigenvalues and eigenvectors )cl all -- computation of characteristic polynomial -- for matrix of integers m:=matrix([[1,2,1],[2,1,-2],[1,-2,4]]) characteristicPolynomial m characteristicPolynomial(m,x) -- for matrix of polynomials p:=matrix([[x+1,2-x*y,x**2+1],[2-x,y+2*x,x**2-2],[y**2,x-2,4-x*y]]) characteristicPolynomial p characteristicPolynomial(p,t) -- for general matrix of FRAC POLY INT n:=matrix([[a,b,c],[d,e,f],[g,h,k]]) characteristicPolynomial n -- there are many functions for the computation of eigenvalues and -- eigenvectors: -- the function eigenvalues returns the eigenvalues : leig := eigenvalues m alpha:=leig.1 -- alpha is a rational eigenvalue; the corresponding eigenvector can be -- computed with the function eigenvector: eigenvector(alpha,m) beta:=leig.2 -- beta is a "symbolic" eigenvalue, i.e. it is a root (symbolically expressed) -- of an irreducible factor of the characteristic polynomial. In this case -- too we can compute the associate eigenvectors. eigenvector(beta,m)$EP(INT) -- eigenvector(beta,m) not accepted by the interpreter -- eigenvalues and eigenvectors can be computed simultaneously -- with the function eigenvectors eigenvectors m q:=matrix [[x**2-y**2,(x-y)*(2*x+3*y)],[x+y,2*x+3*y]] eigenvectors(q) p:=matrix([[76,-18,58,-10],[-4,78,2,-2],[-6,15,45,3],[22,-75,7,41]]) ll := eigenvectors p -- In this case the algebraic multiplicity (the field eigmult) is different -- from the geometric multiplicity (the length of the field eigvec). generalizedEigenvectors p generalizedEigenvector(ll.1,p)$EP(INT) -- generalizedEigenvector(ll.1,p) the interpreter can not handle this -- these functions return respectively the complete set of -- generalized eigenvectors -- or the generalized eigenvectors associated to a particular eigenvalue alpha, -- i.e. a basis of the nullSpace((p-alpha*I)**k) where k is the algebraic -- multiplicity of alpha. -- In the case of symbolic eigenvalues it is possible to convert the symbolic -- eigenvalue and the corresponding eigenvectors in a more explicit form. m mm:=matrix([[30,4,24],[-17,8,-7],[-31,-54,-5]]) -- the function radicalEigenvalues expresses, when possible, the eigenvalues -- in terms of radicals. le1:=radicalEigenvalues m le2:=radicalEigenvalues mm -- the function radicalEigenvector computes the eigenvectors assocoted to -- a given eigenvalue, expressed in terms of radicals radicalEigenvector(le1.2, m) radicalEigenvector(le2.2,mm) -- the function radicalEigenvectors computes simoultaneously all the -- eigenvalues and the associated eigenvectors and expresses the , when -- it is possible, in terms of radical. radicalEigenvectors m radicalEigenvectors mm -- there exist analogous functions for the computation of real and complex -- eigenvalues and eigenvectors. -- in order to compute respectively the eigenvalues or the -- eigenvalues and the associared eigevectors of a matrix m and express them -- as rational numbers (Gaussian rational) up to precision 1/1000000 use realEigenvalues(m,1/1000000) complexEigenvalues(mm,1/1000000) realEigenvectors(m,1/1000000) complexEigenvectors(mm,1/1000000) -- to have the eigenvalues expressed as real float (complex float) use realEigenvalues(m,.000001) realEigenvectors(m,.000001) complexEigenvalues(mm,.000001) complexEigenvectors(mm,.000001) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}