\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input easter.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994. @ <<*>>= <<license>> )cl all -- ----------[ A x i o m ]---------- -- ---------- Initialization ---------- )set bre resume )set messages autoload off )set messages time off )set quit unprotected )set streams calculate 7 -- ---------- Numbers ---------- -- Let's begin by playing with numbers: infinite precision integers factorial(50) factor(%) -- Infinite precision rational numbers 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 -- Arbitrary precision floating point numbers digits(50); -- This number is nearly an integer exp(sqrt(163.)*%pi) digits(20); -- Special functions besselJ(2, 1 + %i) -- Complete decimal expansion of a rational number decimal(1/7) -- Continued fractions continuedFraction(3.1415926535) -- Simplify an expression with nested square roots sqrt(2*sqrt(3) + 4) simplify(%) -- Try a more complicated example (from the Putnam exam) sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))) simplify(%) -- Cardinal numbers 2*Aleph(0) - 3 -- ---------- Statistics ---------- -- ---------- Algebra ---------- -- Numbers are nice, but symbols allow for variability---try some high school -- algebra: rational simplification (x**2 - 4)/(x**2 + 4*x + 4) -- This example requires more sophistication (%e**x - 1)/(%e**(x/2) + 1) normalize(%) -- Expand and factor polynomials (x + 1)**20 D(%, x) factor(%) x**100 - 1 factor(%) -- Factor polynomials over finite fields and field extensions p:= x**4 - 3*x**2 + 1 factor(p) phi:= rootOf(phi**2 - phi - 1); factor(p, [phi]) factor(p :: Polynomial(PrimeField(5))) expand(%) -- Partial fraction decomposition (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2) padicFraction( partialFraction(numerator(%) :: UnivariatePolynomial(x, Fraction Integer), factor(denominator(%) :: Polynomial Integer) :: Factored UnivariatePolynomial(x, Fraction Integer))) -- ---------- Inequalities ---------- -- ---------- Trigonometry ---------- -- Trigonometric manipulations---these are typically difficult for students r:= cos(3*x)/cos(x) real(complexNormalize(%)) real(normalize(simplify(complexNormalize(r)))) -- Use rewrite rules sincosAngles:= rule _ (cos((n | integer?(n)) * x) == _ cos((n - 1)*x) * cos(x) - sin((n - 1)*x) * sin(x); _ sin((n | integer?(n)) * x) == _ sin((n - 1)*x) * cos(x) + cos((n - 1)*x) * sin(x) ) sincosAngles r r:= 'r; -- ---------- Determining Zero Equivalence ---------- -- The following expressions are all equal to zero sqrt(997) - (997**3)**(1/6) sqrt(999983) - (999983**3)**(1/6) (2**(1/3) + 4**(1/3))**3 - 6*(2**(1/3) + 4**(1/3)) - 6 simplify(%) -- This expression is zero for x, y > 0 and n not equal to zero x**(1/n)*y**(1/n) - (x*y)**(1/n) normalize(%) -- See Joel Moses, ``Algebraic Simplification: A Guide for the Perplexed'', -- CACM, Volume 14, Number 8, August 1971 expr:= log(tan(1/2*x + %pi/4)) - asinh(tan(x)) complexNormalize(%) -- Use a roundabout method---show that expr is a constant equal to zero D(expr, x) simplify(real(complexNormalize(expand(simplify(%))))) normalize(eval(expr, x = 0)) log((2*sqrt(r) + 1)/sqrt(4*r + 4*sqrt(r) + 1)) simplify(%) (4*r + 4*sqrt(r) + 1)**(sqrt(r)/(2*sqrt(r) + 1)) _ * (2*sqrt(r) + 1)**(1/(2*sqrt(r) + 1)) - 2*sqrt(r) - 1 normalize(%) -- ---------- The Complex Domain ---------- -- Complex functions---separate into their real and imaginary parts rectform(z) == real(z) + %i*imag(z) rectform(log(3 + 4*%i)) simplify(rectform(tan(x + %i*y))) -- Check for branch abuse. See David R. Stoutemyer, ``Crimes and Misdemeanors -- in the Computer Algebra Trade'', Notices of the AMS, Volume 38, Number 7, -- September 1991. This first expression can simplify to sqrt(x y)/sqrt(x), -- but no further in general (consider what happens when x, y = -1). sqrt(x*y*abs(z)**2) / (sqrt(x)*abs(z)) -- If z = -1, sqrt(1/z) is not equal to 1/sqrt(z) sqrt(1/z) - 1/sqrt(z) -- If z = 3 pi i, log(exp(z)) is not equal to z log(%e**z) normalize(%) -- The principal value of this expression is (10 - 4 pi) i log(%e**(10*%i)) normalize(%) -- If z = pi, arctan(tan(z)) is not equal to z atan(tan(z)) -- If z = 2 pi i, sqrt(exp(z)) is not equal to exp(z/2) sqrt(%e**z) - %e**(z/2) -- ---------- Equations ---------- -- Manipulate an equation using a natural syntax (x = 0)/2 + 1 -- Solve various nonlinear equations---this cubic polynomial has all real roots radicalSolve(3*x**3 - 18*x**2 + 33*x - 19 = 0, x) map(e +-> lhs(e) = rectform(rhs(e)), %) -- Some simple seeming problems can have messy answers eqn:= x**4 + x**3 + x**2 + x + 1 = 0 radicalSolve(eqn, x) -- Check one of the answers eval(eqn, %.1) %e**(2*x) + 2*%e**x + 1 = z solve(%, x) -- This equation is already factored and so *should* be easy to solve (x + 1) * (sin(x)**2 + 1)**2 * cos(3*x)**3 = 0 solve(%, x) -- The following equations have an infinite number of solutions (let n be an -- arbitrary integer): z = 0 [+ n 2 pi i] solve(%e**z = 1, z) -- x = pi/4 [+ n pi] solve(sin(x) = cos(x), x) solve(tan(x) = 1, x) -- x = 0, 0 [+ n pi, + n 2 pi] solve(sin(x) = tan(x), x) -- This equation has no solutions solve(sqrt(x**2 + 1) = x - 2, x) -- Solve a system of linear equations eq1:= x + y + z = 6 eq2:= 2*x + y + 2*z = 10 eq3:= x + 3*y + z = 10 -- Note that the solution is parametric solve([eq1, eq2, eq3], [x, y, z]) -- Solve a system of nonlinear equations eq1:= x**2*y + 3*y*z - 4 = 0 eq2:= -3*x**2*z + 2*y**2 + 1 = 0 eq3:= 2*y*z**2 - z**2 - 1 = 0 -- Solving this by hand would be a nightmare solve([eq1, eq2, eq3], [x, y, z]) -- ---------- Matrix Algebra ---------- m:= matrix([[a, b], [1, a*b]]) -- Invert the matrix minv:= inverse(m) m * minv -- Define a Vandermonde matrix (useful for doing polynomial interpolations) matrix([[1, 1, 1, 1 ], _ [w, x, y, z ], _ [w**2, x**2, y**2, z**2], _ [w**3, x**3, y**3, z**3]]) determinant(%) -- The following formula implies a general result factor(%) -- Compute the eigenvalues of a matrix from its characteristic polynomial m:= matrix([[ 5, -3, -7], _ [-2, 1, 2], _ [ 2, -3, -4]]) characteristicPolynomial(m, lambda) solve(% = 0, lambda) m:= 'm; -- ---------- Tensors ---------- -- ---------- Sums and Products ---------- -- Sums: finite and infinite summation(k**3, k = 1..n) sum(k**3, k = 1..n) limit(sum(1/k**2 + 1/k**3, k = 1..n), n = %plusInfinity) -- Products product(k, k = 1..n) -- ---------- Calculus ---------- -- Limits---start with a famous example limit((1 + 1/n)**n, n = %plusInfinity) limit((1 - cos(x))/x**2, x = 0) -- Apply the chain rule---this is important for PDEs and many other -- applications y:= operator('y); x:= operator('x); D(y(x(t)), t, 2) )clear properties x y -- ---------- Indefinite Integrals ---------- 1/(x**3 + 2) -- This would be very difficult to do by hand integrate(%, x) D(%, x) -- This example involves several symbolic parameters integrate(1/(a + b*cos(x)), x) map(simplify, map(f +-> D(f, x), %)) -- Calculus on a non-smooth (but well defined) function D(abs(x), x) integrate(abs(x), x) -- Calculus on a piecewise defined function a(x) == if x < 0 then -x else x D(a(x), x) integrate(a(x), x) )clear properties a -- The following two integrals should be equivalent. The correct solution is -- [(1 + x)^(3/2) + (1 - x)^(3/2)] / 3 integrate(x/(sqrt(1 + x) + sqrt(1 - x)), x) integrate((sqrt(1 + x) - sqrt(1 - x))/2, x) -- ---------- Definite Integrals ---------- -- The following two functions have a pole at zero integrate(1/x, x = -1..1) integrate(1/x**2, x = -1..1) -- Different branches of the square root need to be chosen in the intervals -- [0, 1] and [1, 2]. The correct results are 4/3, [4 - sqrt(8)]/3, -- [8 - sqrt(8)]/3, respectively. integrate(sqrt(x + 1/x - 2), x = 0..1) integrate(sqrt(x + 1/x - 2), x = 0..1, "noPole") integrate(sqrt(x + 1/x - 2), x = 1..2) integrate(sqrt(x + 1/x - 2), x = 1..2, "noPole") integrate(sqrt(x + 1/x - 2), x = 0..2) integrate(sqrt(x + 1/x - 2), x = 0..2, "noPole") -- Contour integrals integrate(cos(x)/(x**2 + a**2), x = %minusInfinity..%plusInfinity) integrate(cos(x)/(x**2 + a**2), x = %minusInfinity..%plusInfinity, "noPole") -- Integrand with a branch point integrate(t**(a - 1)/(1 + t), t = 0..%plusInfinity) integrate(t**(a - 1)/(1 + t), t = 0..%plusInfinity, "noPole") -- Multiple integrals: volume of a tetrahedron integrate(integrate(integrate(1, z = 0..c*(1 - x/a - y/b)), _ y = 0..b*(1 - x/a)), _ x = 0..a) -- ---------- Series ---------- -- Taylor series---this first example comes from special relativity 1/sqrt(1 - (v/c)**2) series(%, v = 0) 1/%**2 tsin:= series(sin(x), x = 0) tcos:= series(cos(x), x = 0) -- Note that additional terms will be computed as needed tsin/tcos series(tan(x), x = 0) -- Look at the Taylor series around x = 1 )set streams calculate 1 log(x)**a*exp(-b*x) series(%, x = 1) )set streams calculate 7 -- Compare the Taylor series of two different formulations of a function taylor(log(sinh(z)) + log(cosh(z + w)), z = 0) % - taylor(log(sinh(z) * cosh(z + w)), z = 0) -- Power series (compute the general formula) log(sin(x)/x) series(%, x = 0) exp(-x)*sin(x) series(%, x = 0) -- Derive an explicit Taylor series solution of y as a function of x from the -- following implicit relation y:= operator('y); x = sin(y(x)) + cos(y(x)) seriesSolve(%, y, x = 1, 0) )clear properties y -- Pade (rational function) approximation pade(1, 1, taylor(exp(-x), x = 0)) -- ---------- Transforms ---------- -- Laplace and inverse Laplace transforms laplace(cos((w - 1)*t), t, s) inverseLaplace(%, s, t) -- ---------- Difference and Differential Equations ---------- -- Second order linear recurrence equation r:= operator('r); r(n + 2) - 2 * r(n + 1) + r(n) = 2 [%, r(0) = 1, r(1) = m] )clear properties r -- Second order ODE with initial conditions---solve first using Laplace -- transforms f:= operator('f); ode:= D(f(t), t, 2) + 4*f(t) = sin(2*t) map(e +-> laplace(e, t, s), %) -- Now, solve the ODE directly solve(ode, f, t = 0, [0, 0]) -- First order linear ODE y:= operator('y); x**2 * D(y(x), x) + 3*x*y(x) = sin(x)/x solve(%, y, x) -- Nonlinear ODE D(y(x), x, 2) + y(x)*D(y(x), x)**3 = 0 solve(%, y, x) -- A simple parametric ODE D(y(x, a), x) = a*y(x, a) solve(%, y, x); -- ODE with boundary conditions. This problem has nontrivial solutions -- y(x) = A sin([pi/2 + n pi] x) for n an arbitrary integer. solve(D(y(x), x, 2) + k**2*y(x) = 0, y, x) -- bc(%, x = 0, y = 0, x = 1, D(y(x), x) = 0) -- System of two linear, constant coefficient ODEs x:= operator('x); system:= [D(x(t), t) = x(t) - y(t), D(y(t), t) = x(t) + y(t)] -- Check the answer -- Triangular system of two ODEs system:= [D(x(t), t) = x(t) * (1 + cos(t)/(2 + sin(t))), _ D(y(t), t) = x(t) - y(t)] -- Try solving this system one equation at a time solve(system.1, x, t) isTimes(subst(%.basis.1, cos(t) = sqrt(1 - sin(t)**2))) reduce(*, cons(subst( factors(factor(subst(%.1**2, sin(t) = u) :: Polynomial Integer)).1.factor, u = sin(t)), rest(%))) x(t) = C1 * % solve(map(e +-> subst(e, %), system.2), y, t) y(t) = simplify(%.particular) + C2 * %.basis.1 )clear properties x y -- ---------- Operators ---------- -- Linear differential operator DD:= operator("D") :: Operator(Expression Integer) evaluate(DD, e +-> D(e, x))$Operator(Expression Integer) L:= (DD - 1) * (DD + 2) g:= operator('g) L(f(x)) subst(L(subst(g(y), y = x)), x = y) subst(L(subst(A * sin(z**2), z = x)), x = z) -- Truncated Taylor series operator T:= (f, xx, a) +-> subst((DD**0)(f(x)), x = a)/factorial(0) * (xx - a)**0 + _ subst((DD**1)(f(x)), x = a)/factorial(1) * (xx - a)**1 + _ subst((DD**2)(f(x)), x = a)/factorial(2) * (xx - a)**2 T(f, x, a) T(g, y, b) Sin:= operator("sin") :: Operator(Expression Integer) evaluate(Sin, x +-> sin(x))$Operator(Expression Integer) T(Sin, z, c) -- ---------- Programming ---------- -- Write a simple program to compute Legendre polynomials p(n, x) == 1/(2**n*factorial(n)) * D((x**2 - 1)**n, x, n) for i in 0..4 repeat { output(""); output(concat(["p(", string(i), ", x) = "])); output(p(i, x))} eval(p(4, x), x = 1) -- Now, perform the same computation using a recursive definition pp(0, x) == 1 pp(1, x) == x pp(n, x) == ((2*n - 1)*x*pp(n - 1, x) - (n - 1)*pp(n - 2, x))/n for i in 0..4 repeat { output(""); output(concat(["pp(", string(i), ", x) = "])); output(pp(i, x))} )clear properties p pp -- ---------- Translation ---------- -- Horner's rule---this is important for numerical algorithms a:= operator('a) sum(a(i)*x**i, i = 1..5) p:= factor(%) -- Convert the result into FORTRAN syntax )set fortran ints2floats off outputAsFortran('p = p) -- ---------- Boolean Logic ---------- -- Simplify logical expressions true and false x or (not x) x or y or (x and y) )set bre nobr @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}