\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input dhtri.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994. @ <<*>>= <<license>> -- Create Affine transformations (DH matrices) that transform -- a given triangle into another given triangle -- tri2tri(t1, t2) returns a DHMATRIX which transforms t1 to t2, -- where t1 and t2 are the vertices of two triangles in 3-space. tri2tri(t1: List Point DoubleFloat, t2: List Point DoubleFloat): DHMATRIX(DoubleFloat) == n1 := triangleNormal(t1) n2 := triangleNormal(t2) tet2tet(concat(t1, n1), concat(t2, n2)) -- tet2tet(t1, t2) returns a DHMATRIX which transforms t1 to t2, -- where t1 and t2 are the vertices of two tetrahedrons in 3-space. tet2tet(t1: List Point DoubleFloat, t2: List Point DoubleFloat): DHMATRIX(DoubleFloat) == m1 := makeColumnMatrix t1 m2 := makeColumnMatrix t2 m2 * inverse(m1) -- put the vertices of a tetrahedron into matrix form makeColumnMatrix(t) == m := new(4,4,0)$DHMATRIX(DoubleFloat) for x in t for i in 1..repeat for j in 1..3 repeat m(j,i) := x.j m(4,i) := 1 m -- return a vector normal to the given triangle, whose length -- is the square root of the area of the triangle triangleNormal(t) == a := triangleArea t p1 := t.2 - t.1 p2 := t.3 - t.2 c := cross(p1, p2) len := length(c) len = 0 => error "degenerate triangle!" c := (1/len)*c t.1 + sqrt(a) * c -- compute the are of a triangle using Heron's formula triangleArea t == a := length(t.2 - t.1) b := length(t.3 - t.2) c := length(t.1 - t.3) s := (a+b+c)/2 sqrt(s*(s-a)*(s-b)*(s-c)) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}