\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input contfrac.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1991. @ <<*>>= <<license>> )clear all r1 := 3/4 r2 := 314159/100000 c1 := r1 :: ContinuedFraction Integer c2 := r2 :: ContinuedFraction Integer -- We can view these in the list notation partialQuotients c1 partialQuotients c2 -- These are algebraic objects, so we can manipulate them accordingly c1 + c2 c1 * c2 1 / c2 c1 - c2 c2 - c1 -- and can convert them back to rational numbers. convergents % )clear all -- Continued fractions over other Euclidean domains a0 := ((-122 + 597* %i)/(4 - 4*%i)) b0 := ((-595 - %i)/(3 - 4*%i)) a := continuedFraction(a0) b := continuedFraction(b0) a + b convergents % last % - (a0 + b0) a / b convergents % last % - (a0/b0) (a = b)::Boolean c := continuedFraction(3 + 4*%i, repeating [1 + %i], repeating [5 - %i]) a/c -- (a = c)::Boolean -- should give error d := complete continuedFraction(3+4*%i, repeating [1+%i],[i-%i for i in 1..5]) (a = d)::Boolean q : Fraction UnivariatePolynomial('x, Fraction Integer) q := (2*x**2 - x + 1) / (3*x**3 - x + 8) c := continuedFraction q d := continuedFraction differentiate q c/d convergents % q/differentiate q )clear all -- This file illustrates continued fractions. )set streams calculate 7 -- Use the notation Phi(ai/bi, i = 1..n) for continued fractions -- a1/(b1 + (a2/b2 + ... (an/bn) ...)) -- 1/(e-1) may be written Phi(i/i, i = 1..) s := continuedFraction(0, expand [1..], expand [1..]) -- Euler discovered the relation (e-1)/(e+1) = Phi(1/(4i-2), i = 1..) t := reducedContinuedFraction(0, [4*i-2 for i in 1..]) -- Arithmetic on infinite continued fractions is supported. -- The results are given in reduced form. We illustrate by using the -- values s = 1/(e-1) and t = (e-1)/(e+1) to recover the expansion for e. e := 1/(s*t) - 1 c := convergents e for i in 1..15 repeat output numeric c.i (s = t)::Boolean @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}