\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input constant.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1996. @ <<*>>= <<license>> )clear all -- knuth volume 2 p596 tables of numerical quantities digits(42) outputSpacing(5) numeric(sqrt(2)) numeric(sqrt(3)) numeric(sqrt(5)) numeric(sqrt(10)) numeric(2**(1/3)) numeric(3**(1/3)) numeric(2**(1/4)) numeric(log(2)) numeric(log(3)) numeric(log(10)) numeric(1/log(2)) numeric(1/log(10)) numeric(%pi) numeric(%pi/180) numeric(1/%pi) numeric(%pi**2) numeric(sqrt(%pi)) numeric(Gamma(1/2)) numeric(Gamma(1/3)) numeric(Gamma(2/3)) numeric(%e) numeric(1/%e) numeric(%e**2) -- this we don't have. it is the difference of the harmonic series and -- the natural log (e.g. limit 1+1/2+...1/m-log(m)) -- this converges slowly, essentially giving 1 more decimal place per -- power of 10 in the sum. gamma:=numeric(sum(1/x,x=1..10000)-log(10000)) numeric(log(%pi)) -- this we don't have. it is the golden ratio (1 + sqrt(5))/2 phi:=(1+sqrt(5))/2 numeric(phi) -- gamma isn't the right to any reasonable precision above. reset it. gamma:=0.5772156649015328606065120900824024310422 numeric(%e**gamma) numeric(%e**(%pi/4)) numeric(sin(1)) numeric(cos(1)) -- this we don't have. it is the zeta function -- numeric(zeta(3)) numeric(log(phi)) numeric(1/log(phi)) numeric(-log(log(2))) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}