\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input conformal.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994. @ <<*>>= <<license>> -- Drawing conformal maps. -- The functions in this file draw conformal maps both on the -- complex plane and on the Riemann sphere. -- Compile, don't interpret functions. )set fun comp on C := Complex DoubleFloat -- Complex Numbers S := Segment DoubleFloat -- Draw ranges R3 := POINT DoubleFloat -- points in 3-space -- conformalDraw(f, rRange, tRange, rSteps, tSteps, coord) -- draws the image of the coordinate grid under f in the complex plane. -- The grid may be given in either polar or cartesian coordinates. -- parameter descriptions: -- f: the function to draw -- rRange: the range of the radius (in polar) or real (in cartesian) -- tRange: the range of theta (in polar) or imaginary (in cartesian) -- tSteps, rSteps: the number of intervals in each direction -- coord: the coordinate system to use. Either "polar" or "cartesian" conformalDraw: (C -> C, S, S, PI, PI, String) -> VIEW3D conformalDraw(f, rRange, tRange, rSteps, tSteps, coord) == transformC := coord = "polar" => polar2Complex cartesian2Complex cm := makeConformalMap(f, transformC) sp := createThreeSpace() adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps) makeViewport3D(sp, "Conformal Map") -- riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) -- draws the image of the coordinate grid under f on the Riemann sphere. -- The grid may given in either polar or cartesian coordinates. -- parameter descriptions: -- f: the function to draw -- rRange: the range of the radius(in polar) or real (in cartesian) -- tRange: the range of theta (in polar) or imaginary (in cartesian) -- tSteps, rSteps: the number of intervals in each direction -- coord: the coordinate system to use. either "polar" or "cartesian" riemannConformalDraw: (C -> C, S, S, PI, PI, String) -> VIEW3D riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) == transformC := coord = "polar" => polar2Complex cartesian2Complex sp := createThreeSpace() cm := makeRiemannConformalMap(f, transformC) adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps) -- add an invisible point at the north pole for scaling curve(sp, [point [0,0,2.0@DoubleFloat,0], point [0,0, 2.0@DoubleFloat,0]]) makeViewport3D(sp, "Conformal Map on the Riemann Sphere") -- Plot the coordinate grid using adaptive plotting for the coordinate -- lines, and drawing tubes around the lines. adaptGrid(sp, f, uRange, vRange, uSteps, vSteps) == delU := (hi(uRange) - lo(uRange))/uSteps delV := (hi(vRange) - lo(vRange))/vSteps uSteps := uSteps + 1; vSteps := vSteps + 1 u := lo uRange -- draw the coodinate lines in the v direction for i in 1..uSteps repeat -- create a curve 'c' which fixes the current value of 'u' c := curryLeft(f,u) cf := (t:DoubleFloat):DoubleFloat +-> 0 -- draw the 'v' coordinate line makeObject(c, vRange::Segment Float, colorFunction == cf, space == sp, _ tubeRadius == 0.02, tubePoints == 6) u := u + delU v := lo vRange -- draw the coodinate lines in the u direction for i in 1..vSteps repeat -- create a curve 'c' which fixes the current value of 'v' c := curryRight(f,v) cf := (t:DoubleFloat):DoubleFloat +-> 1 -- draw the 'u' coordinate line makeObject(c, uRange::Segment Float, colorFunction == cf, space == sp, _ tubeRadius == 0.02, tubePoints == 6) v := v + delV void() -- map a point in the complex plane to the Riemann sphere. riemannTransform(z) == r := sqrt norm z cosTheta := (real z)/r sinTheta := (imag z)/r cp := 4*r/(4+r**2) sp := sqrt(1-cp*cp) if r>2 then sp := -sp point [cosTheta*cp, sinTheta*cp, -sp + 1] -- convert cartesian coordinates to cartesian form complex cartesian2Complex(r:DoubleFloat, i:DoubleFloat):C == complex(r, i) -- convert polar coordinates to cartesian form complex polar2Complex(r:DoubleFloat, th:DoubleFloat):C == complex(r*cos(th), r*sin(th)) -- convert a complex function into a mapping from (DoubleFloat,DoubleFloat) to R3 in the -- complex plane. makeConformalMap(f, transformC) == (u:DoubleFloat,v:DoubleFloat):R3 +-> z := f transformC(u, v) point [real z, imag z, 0.0@DoubleFloat] -- convert a complex function into a mapping from (DoubleFloat,DoubleFloat) to R3 on the -- Riemann sphere. makeRiemannConformalMap(f, transformC) == (u:DoubleFloat, v:DoubleFloat):R3 +-> riemannTransform f transformC(u, v) -- draw a picture of the mapping of the complex plane to the Riemann sphere. riemannSphereDraw: (S, S, PI, PI, String) -> VIEW3D riemannSphereDraw(rRange, tRange, rSteps, tSteps, coord) == transformC := coord = "polar" => polar2Complex cartesian2Complex grid := (u:DoubleFloat , v:DoubleFloat): R3 +-> z1 := transformC(u, v) point [real z1, imag z1, 0] sp := createThreeSpace() adaptGrid(sp, grid, rRange, tRange, rSteps, tSteps) connectingLines(sp, grid, rRange, tRange, rSteps, tSteps) makeObject(riemannSphere, 0..2*%pi, 0..%pi, space == sp) f := (z:C):C +-> z cm := makeRiemannConformalMap(f, transformC) adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps) makeViewport3D(sp, "Riemann Sphere") -- draw the lines which connect the points in the complex plane to -- the north pole of the Riemann sphere. connectingLines(sp, f, uRange, vRange, uSteps, vSteps) == delU := (hi(uRange) - lo(uRange))/uSteps delV := (hi(vRange) - lo(vRange))/vSteps uSteps := uSteps + 1; vSteps := vSteps + 1 u := lo uRange -- for each grid point for i in 1..uSteps repeat v := lo vRange for j in 1..vSteps repeat p1 := f(u,v) p2 := riemannTransform complex(p1.1, p1.2) fun := lineFromTo(p1,p2) cf := (t:DoubleFloat):DoubleFloat +-> 3 makeObject(fun, 0..1, space == sp, tubePoints == 4, tubeRadius == 0.01, colorFunction == cf) v := v + delV u := u + delU void() riemannSphere(u,v) == sv := sin(v) 0.99@DoubleFloat*(point [cos(u)*sv, sin(u)*sv, cos(v),0.0@DoubleFloat]) + point [0.0@DoubleFloat, 0.0@DoubleFloat, 1.0@DoubleFloat, 4.0@DoubleFloat] -- create a line functions which goeas from p1 to p2 as its paramter -- goes from 0 to 1. lineFromTo(p1, p2) == d := p2 - p1 (t:DoubleFloat):Point DoubleFloat +-> p1 + t*d @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}