\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input clifford.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \section{License} <>= --Copyright The Numerical Algorithms Group Limited 1991. @ <<*>>= <> -- CliffordAlgebra(n, K, Q) defines a vector space of dimension 2**n -- over K, given a quadratic form Q on K**n. -- -- If e[i] 1<=i<=n is a basis for K**n then -- 1, e[i] 1<=i<=n, e[i1]*e[i2] 1<=i1e3, e2*e3->e1, e3*e1->e2. dual2 a == coefficient(a,[2,3])$Ext * i + _ coefficient(a,[3,1])$Ext * j + _ coefficient(a,[1,2])$Ext * k -- The vector cross product is then given by dual2(x*y) --% The Dirac Algebra used in Quantum Field Theory. )clear p qf K := FRAC INT g: SQMATRIX(4, K) := [[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,-1]] qf: QFORM(4, K) := quadraticForm g D := CLIF(4,K,qf) -- The usual notation is gamma sup i. gam := [e(i)$D for i in 1..4] -- There are various contraction identities of the form -- g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) = -- 2*(gam(s)gam(m)gam(n)gam(r) + gam(r)*gam(n)*gam(m)*gam(s)) -- where the sum over l and t is implied. -- Verify this identity for m=1,n=2,r=3,s=4 m := 1; n:= 2; r := 3; s := 4; lhs := reduce(+,[reduce(+,[g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) for l in 1..4]) for t in 1..4]) rhs := 2*(gam s * gam m*gam n*gam r + gam r*gam n*gam m*gam s) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}