\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input cdraw.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994. @ <<*>>= <<license>> -- complex surface and vector field drawing by SCM -- complex surface vector field drawing C := Complex DoubleFloat S := Segment DoubleFloat PC := Record(rr:DoubleFloat, th:DoubleFloat) realSteps: PI := 25 -- the number of steps in the real direction imagSteps: PI := 25 -- the number of steps in the imaginary direction clipValue: DoubleFloat := 10 -- the maximum length of a vector to draw -- Draw a complex function as a height field -- uses the complex norm as the height and the complex argument as the color -- optionally it will draw arrows on the surface indicating the direction -- of the complex argument -- sample call: -- f: C -> C -- f z == exp(1/z) -- drawComplex(f, 0.3..3, 0..2*%pi, false) -- parameter descriptions: -- f: the function to draw -- rRange: the range of the real values -- imagRange: the range of imaginary values drawComplex(f: C -> C, realRange: S, imagRange: S): VIEW3D == free realSteps, imagSteps delReal := (hi(realRange) - lo(realRange))/realSteps delImag := (hi(imagRange) - lo(imagRange))/imagSteps funTable: ARRAY2(PC) := new(realSteps+1, imagSteps+1, [0,0]$PC) real := lo(realRange) for i in 1..realSteps+1 repeat imag := lo(imagRange) for j in 1..imagSteps+1 repeat z := f complex(real, imag) funTable(i,j) := [clipFun(sqrt norm z), argument(z)]$PC imag := imag + delImag real := real + delReal llp:List List Point DoubleFloat := [] real := lo(realRange) for i in 1..realSteps+1 repeat imag := lo(imagRange) lp:List Point DoubleFloat := [] for j in 1..imagSteps+1 repeat lp := cons(point [real,imag, funTable(i,j).rr, funTable(i,j).th] ,lp) imag := imag + delImag real := real + delReal llp := cons(reverse! lp, llp) llp := reverse! llp space := mesh(llp)$ThreeSpace(DoubleFloat) makeViewport3D(space, "Complex Function")$VIEW3D -- draw a complex vector field -- these vector fields should be viewed from the top by pressing the -- "XY" translate button on the VIEW3D control panel -- parameters: -- f: the mapping from C to C which we will draw -- realRange: the range of the reals -- tRange: the range of the imaginaries -- sample call: -- f z == sin z -- drawComplexVectorField(f, -2..2, -2..2) -- call the functions 'setRealSteps' and 'setImagSteps' to change the -- number of arrows drawn in each direction. drawComplexVectorField(f: C -> C, realRange: S, imagRange: S): VIEW3D == -- compute the steps size of the grid delReal := (hi(realRange) - lo(realRange))/realSteps delImag := (hi(imagRange) - lo(imagRange))/imagSteps -- create the space to hold the arrows space := create3Space()$ThreeSpace DoubleFloat real := lo(realRange) for i in 1..realSteps+1 repeat imag := lo(imagRange) for j in 1..imagSteps+1 repeat -- compute the function z := f complex(real, imag) -- get the direction of the arrow arg := argument z -- get the length of the arrow len := clipFun(sqrt norm z) -- create point at the base of the arrow p1 := point [real, imag, 0.0@DoubleFloat, arg] -- scale the arrow length so it isn't too long scaleLen := delReal * len -- create the point at the top of the arrow p2 := point [p1.1 + scaleLen*cos(arg), p1.2 + scaleLen*sin(arg), 0.0@DoubleFloat, arg] -- make the pointer at the top of the arrow arrow := makeArrow(p1, p2, scaleLen, arg) -- add the line segments in the arrow to the space for a in arrow repeat curve(space, a)$ThreeSpace DoubleFloat imag := imag + delImag real := real + delReal -- draw the vector feild makeViewport3D(space, "Complex Vector Field")$VIEW3D -- relative size of the arrow head compared to the length of the arrow arrowScale := 0.25@DoubleFloat -- angle of the arrow head arrowAngle := %pi-%pi/10.0@DoubleFloat -- Add an arrow head to a line segment, which starts at 'p1', ends at 'p2', -- has length 'len', and and angle 'arg'. We pass 'len' and 'arg' as -- arguments since thet were already computed by the calling program makeArrow(p1, p2, len, arg) == c1 := cos(arg + arrowAngle) s1 := sin(arg + arrowAngle) c2 := cos(arg - arrowAngle) s2 := sin(arg - arrowAngle) p3 := point [p2.1 + c1*arrowScale*len, p2.2 + s1*arrowScale*len, p2.3, p2.4] p4 := point [p2.1 + c2*arrowScale*len, p2.2 + s2*arrowScale*len, p2.3, p2.4] [[p1, p2, p3], [p2, p4]] -- set the number of steps to use in the real direction setRealSteps(n) == free realSteps realSteps := n -- set the number of steps to use in the imaginary direction setImagSteps(n) == free imagSteps imagSteps := n -- set the maximum length of a vector setClipValue clip == free clipValue clipValue := clip -- clip a value in the interval (-clip...clip) clipFun(x:DoubleFloat):DoubleFloat == min(max(x, -clipValue), clipValue) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}