\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input calculus2.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{bugs} \subsection{bug1} exp: series expansion involves transcendental constants <<bug1>>= exp(2 + tan(y)) @ <<bugs>>= -- Input for page FormalDerivativePage )clear all differentiate(f, x) f := operator f x := operator x y := operator y a := f(x z, y z, z**2) + x y(z+1) dadz := differentiate(a, z) eval(eval(dadz, 'x, z +-> exp z), 'y, z +-> log(z+1)) eval(eval(a, 'x, z +-> exp z), 'y, z +-> log(z+1)) differentiate(%, z) -- Input for page SeriesArithmeticPage )clear all x := series x num := 3 + x den := 1 + 7 * x num / den base := 1 / (1 - x) expon := x * base base ** expon -- Input for page SeriesConversionPage )clear all f := sin(a*x) series(f,x = 0) g := y / (exp(y) - 1) series(g) h := sin(3*x) series(h,x,x = %pi/12) series(sqrt(tan(a*x)),x = 0) series(sec(x) ** 2,x = %pi/2) bern := t * exp(t*x) / (exp(t) - 1) series(bern,t = 0) -- Input for page SeriesDifferentialEquationPage )clear all )set streams calculate 7 y := operator 'y eq := differentiate(y(x), x, 3) - sin(differentiate(y(x), x, 2)) * exp(y(x)) = cos(x) seriesSolve(eq, y, x = 0, [1, 0, 0]) x := operator 'x eq1 := differentiate(x(t), t) = 1 + x(t)**2 eq2 := differentiate(y(t), t) = x(t) * y(t) seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0]) -- Input for page LaplacePage )clear all sin(a*t) * cosh(a*t) - cos(a*t) * sinh(a*t) laplace(%, t, s) laplace((exp(a*t) - exp(b*t))/t, t, s) laplace(2/t * (1 - cos(a*t)), t, s) laplace(exp(-a*t) * sin(b*t) / b**2, t, s) laplace((cos(a*t) - cos(b*t))/t, t, s) laplace(exp(a*t+b)*Ei(c*t), t, s) laplace(a*Ci(b*t) + c*Si(d*t), t, s) laplace(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s) -- Input for page SeriesCoefficientPage )clear all x := series(x) y := exp(x) * sin(x) coefficient(y,6) coefficient(y,15) y -- Input for page SymbolicIntegrationPage )clear all f := (x**2+2*x+1) / (x**6+6*x**5+15*x**4+20*x**3+15*x**2+6*x+2) integrate(f, x) g := log(1 + sqrt(a * x + b)) / x integrate(g, x) integrate(1/(x**2 - 2),x) integrate(1/(x**2 + 2),x) h := x**2 / (x**4 - a**2) integrate(h, x) complexIntegrate(h, x) expandLog % rootSimp % ratForm % -- Input for page DerivativePage )clear all f := exp exp x differentiate(f, x) differentiate(f, x, 4) g := sin(x**2 + y) differentiate(g, y) differentiate(g, [y, y, x, x]) -- Input for page SeriesFormulaPage )clear all taylor(n +-> 1/factorial(n),x = 0) taylor(n +-> (-1)**(n-1)/n,x = 1,1..) taylor(n +-> (-1)**(n-1)/n,x = 1,1..7) laurent(n +-> (-1)**(n-1)/(n + 2),x = 1,-1..) puiseux(i +-> (-1)**((i-1)/2)/factorial(i),x = 0,1..,2) puiseux(j +-> j**2,x = 8,-4/3..,1/2) series(n +-> 1/factorial(n),x = 0) series(n +-> (-1)**(n - 1)/(n + 2),x = 1,-1..) series(i +-> (-1)**((i - 1)/2)/factorial(i),x = 0,1..,2) -- Input for page SeriesCreationPage )clear all x := series x 1/(1 - x - x**2) sin(x) sin(1 + x) sin(a * x) series(1/log(y),y = 1) f : UTS(FLOAT,z,0) := exp(z) series(1/factorial(n),n,w = 0) -- Input for page SeriesFunctionPage )clear all x := series x rat := x**2 / (1 - 6*x + x**2) sin(rat) y : UTS(FRAC INT,y,0) := y exp(y) tan(y**2) cos(y + y**5) log(1 + sin(y)) <<bug1>> z : UTS(EXPR INT,z,0) := z exp(2 + tan(z)) w := taylor w exp(2 + tan(w)) -- Input for page LimitPage )clear all f := sin(a*x) / tan(b*x) limit(f,x=0) g := csc(a*x) / csch(b*x) limit(g,x=0) h := (1 + k/x)**x limit(h,x=%plusInfinity) -- Input for page SeriesBernoulliPage )clear all reduce(+,[m**4 for m in 1..10]) sum4 := sum(m**4, m = 1..k) eval(sum4, k = 10) f := t*exp(x*t) / (exp(t) - 1) )set streams calculate 5 ff := taylor(f,t = 0) factorial(6) * coefficient(ff,6) g := eval(f, x = x + 1) - f normalize(g) taylor(g,t = 0) B5 := factorial(5) * coefficient(ff,5) 1/5 * (eval(B5, x = k + 1) - eval(B5, x = 1)) sum4 @ <<*>>= -- Input for page FormalDerivativePage )clear all differentiate(f, x) f := operator f x := operator x y := operator y a := f(x z, y z, z**2) + x y(z+1) dadz := differentiate(a, z) eval(eval(dadz, 'x, z +-> exp z), 'y, z +-> log(z+1)) eval(eval(a, 'x, z +-> exp z), 'y, z +-> log(z+1)) differentiate(%, z) -- Input for page SeriesArithmeticPage )clear all x := series x num := 3 + x den := 1 + 7 * x num / den base := 1 / (1 - x) expon := x * base base ** expon -- Input for page SeriesConversionPage )clear all f := sin(a*x) series(f,x = 0) g := y / (exp(y) - 1) series(g) h := sin(3*x) series(h,x,x = %pi/12) series(sqrt(tan(a*x)),x = 0) series(sec(x) ** 2,x = %pi/2) bern := t * exp(t*x) / (exp(t) - 1) series(bern,t = 0) -- Input for page SeriesDifferentialEquationPage )clear all )set streams calculate 7 y := operator 'y eq := differentiate(y(x), x, 3) - sin(differentiate(y(x), x, 2)) * exp(y(x)) = cos(x) seriesSolve(eq, y, x = 0, [1, 0, 0]) x := operator 'x eq1 := differentiate(x(t), t) = 1 + x(t)**2 eq2 := differentiate(y(t), t) = x(t) * y(t) seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0]) -- Input for page LaplacePage )clear all sin(a*t) * cosh(a*t) - cos(a*t) * sinh(a*t) laplace(%, t, s) laplace((exp(a*t) - exp(b*t))/t, t, s) laplace(2/t * (1 - cos(a*t)), t, s) laplace(exp(-a*t) * sin(b*t) / b**2, t, s) laplace((cos(a*t) - cos(b*t))/t, t, s) laplace(exp(a*t+b)*Ei(c*t), t, s) laplace(a*Ci(b*t) + c*Si(d*t), t, s) laplace(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s) -- Input for page SeriesCoefficientPage )clear all x := series(x) y := exp(x) * sin(x) coefficient(y,6) coefficient(y,15) y -- Input for page SymbolicIntegrationPage )clear all f := (x**2+2*x+1) / (x**6+6*x**5+15*x**4+20*x**3+15*x**2+6*x+2) integrate(f, x) g := log(1 + sqrt(a * x + b)) / x integrate(g, x) integrate(1/(x**2 - 2),x) integrate(1/(x**2 + 2),x) h := x**2 / (x**4 - a**2) integrate(h, x) complexIntegrate(h, x) expandLog % rootSimp % ratForm % -- Input for page DerivativePage )clear all f := exp exp x differentiate(f, x) differentiate(f, x, 4) g := sin(x**2 + y) differentiate(g, y) differentiate(g, [y, y, x, x]) -- Input for page SeriesFormulaPage )clear all taylor(n +-> 1/factorial(n),x = 0) taylor(n +-> (-1)**(n-1)/n,x = 1,1..) taylor(n +-> (-1)**(n-1)/n,x = 1,1..7) laurent(n +-> (-1)**(n-1)/(n + 2),x = 1,-1..) puiseux(i +-> (-1)**((i-1)/2)/factorial(i),x = 0,1..,2) puiseux(j +-> j**2,x = 8,-4/3..,1/2) series(n +-> 1/factorial(n),x = 0) series(n +-> (-1)**(n - 1)/(n + 2),x = 1,-1..) series(i +-> (-1)**((i - 1)/2)/factorial(i),x = 0,1..,2) -- Input for page SeriesCreationPage )clear all x := series x 1/(1 - x - x**2) sin(x) sin(1 + x) sin(a * x) series(1/log(y),y = 1) f : UTS(FLOAT,z,0) := exp(z) series(1/factorial(n),n,w = 0) -- Input for page SeriesFunctionPage )clear all x := series x rat := x**2 / (1 - 6*x + x**2) sin(rat) y : UTS(FRAC INT,y,0) := y exp(y) tan(y**2) cos(y + y**5) log(1 + sin(y)) z : UTS(EXPR INT,z,0) := z exp(2 + tan(z)) w := taylor w exp(2 + tan(w)) -- Input for page LimitPage )clear all f := sin(a*x) / tan(b*x) limit(f,x=0) g := csc(a*x) / csch(b*x) limit(g,x=0) h := (1 + k/x)**x limit(h,x=%plusInfinity) -- Input for page SeriesBernoulliPage )clear all reduce(+,[m**4 for m in 1..10]) sum4 := sum(m**4, m = 1..k) eval(sum4, k = 10) f := t*exp(x*t) / (exp(t) - 1) )set streams calculate 5 ff := taylor(f,t = 0) factorial(6) * coefficient(ff,6) g := eval(f, x = x + 1) - f normalize(g) taylor(g,t = 0) B5 := factorial(5) * coefficient(ff,5) 1/5 * (eval(B5, x = k + 1) - eval(B5, x = 1)) sum4 @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}