\documentclass{article} \usepackage{axiom} \usepackage{amssymb} \begin{document} \title{\$SPAD/src/input asec.input} \author{Timothy Daly} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{ASC.1 Introduction} Let $x$ be a complex variable of $\mathbb{C} \setminus \{0\}$.The function Inverse Secant (noted {\tt asec}) is defined by the following second order differential equation $$\left(2 x^{2} - 1\right) \frac{\partial y (x)}{\partial x} + \left(x^{3} - x\right) \frac{\partial^{2} y (x)}{\partial x^{2}} =0.$$ The initial conditions at $0$ are not simple to state, since $0$ is a (regular) singular point. \section{ASC.2 Series and asymptotic expansions} \subsection{ASC.2.1 Asymptotic expansion at $-1$} \subsubsection{ASC.2.1.1 First terms} $$ \begin{array}{cc} & asec(x)\approx (\pi\ldots) + \sqrt{x + 1} \left(-i\sqrt{2} - \frac{5 i}{12} (x + 1) \sqrt{2} - \frac{43 i}{160} (x + 1)^{2} \sqrt{2}\right. \\ & \quad{}\quad{}- \frac{177 i}{896} (x + 1)^{3} \sqrt{2} - \frac{2867 i}{18432} (x + 1)^{4} \sqrt{2} - \\ & \quad{}\quad{}\frac{11531 i}{90112} (x + 1)^{5} \sqrt{2} - \frac{92479 i}{851968} (x + 1)^{6} \sqrt{2} - \\ & \left.\quad{}\quad{}\frac{74069 i}{786432} (x + 1)^{7} \sqrt{2} - \frac{11857475 i}{142606336} (x + 1)^{8} \sqrt{2}\ldots\right). \end{array} $$ \subsection{ASC.2.1 Asymptotic expansion at $0$} \subsubsection{ASC.2.2.1 First terms} $$ \begin{array}{cc} & asec(x)\approx \\ & \quad{}\quad{}\left(i ln(2) + \frac{i}{4} x^{2} + \frac{3 i}{32} x^{4} + \frac{5 i}{96} x^{6} + \frac{35 i}{1024} x^{8} + i ln(x)\ldots\right). \end{array} $$ \subsection{ASC.2.3 Asymptotic expansion at $1$} \subsubsection{ASC.2.3.1 First terms} $$ \begin{array}{cc} & asec(x)\approx \sqrt{x - 1} \left(\sqrt{2} - \frac{5 \sqrt{2} (x - 1)}{12} + \frac{43 \sqrt{2} (x - 1)^{2}}{160} - \right. \\ & \quad{}\quad{}\frac{177 \sqrt{2} (x - 1)^{3}}{896} + \frac{2867 \sqrt{2} (x - 1)^{4}}{18432} - \frac{11531 \sqrt{2} (x - 1)^{5}}{90112} + \\ & \quad{}\quad{}\frac{92479 \sqrt{2} (x - 1)^{6}}{851968} - \frac{74069 \sqrt{2} (x - 1)^{7}}{786432} + \\ & \quad{}\quad{}\frac{11857475 \sqrt{2} (x - 1)^{8}}{142606336} - \frac{47442055 \sqrt{2} (x - 1)^{9}}{637534208} + \\ & \quad{}\quad{}\frac{126527543 \sqrt{2} (x - 1)^{10}}{1879048192} - \frac{1518418695 \sqrt{2} (x - 1)^{11}}{24696061952} + \\ & \quad{}\quad{}\frac{24295375159 \sqrt{2} (x - 1)^{12}}{429496729600} - \frac{97182800711 \sqrt{2} (x - 1)^{13}}{1855425871872} + \\ & \left.\quad{}\quad{}\frac{777467420263 \sqrt{2} (x - 1)^{14}}{15942918602752} - \frac{3109879375897 \sqrt{2} (x - 1)^{15}}{68169720922112}\ldots\right). \end{array} $$ \subsubsection{ASC.2.3.2 General form} $$asec(x)\approx \sqrt{x - 1} \sum_{n = 0}^{\infty} u (n) (x - 1)^{n}$$ The coefficients $u(n)$ satisfy the recurrence $$ \begin{array}{cc} & 2 u(n) \left(\frac{1}{2} + n\right) n + u(n - 1) \left(-\frac{1}{2} + n\right) \left(-\frac{1}{2} + 3 n\right) + u(n - 2) \left(-\frac{3}{2} + n\right) \left(-\frac{1}{2} + n\right) \\ & \quad{}\quad{}=0. \end{array} $$ Initial conditions of ASC.2.3.2.2 are given by $$ \begin{array}{cc} u(0)& =\sqrt{2}, \\ u(1)& =\frac{-5\sqrt{2}}{12}. \end{array} $$ As implemented within OpenAxiom the {\tt asec} function is $$sec^{-1}(z) == cos^{-1}\left(\frac{1}{z}\right)$$ <<*>>= )spool asec.output )set message test off )set message auto off )set break resume digits(22) )clear all --S 1 of 10 asec(-2.0) --R --R (1) 2.0943951023 9319549230 8 --R Type: Float --E 1 --S 2 of 10 asec(-1.5) --R --R (2) 2.3005239830 2186298268 6 --R Type: Float --E 2 --S 3 of 10 asec(-1.0) --R --R (3) 3.1415926535 8979323846 3 --R Type: Float --E 3 --S 4 of 10 asec(-0.5) --R --R >> Error detected within library code: --R acos: argument > 1 in magnitude --R --R Continuing to read the file... --R --E 4 --S 5 of 10 asec(-0.0) --R --R >> Error detected within library code: --R asec: no reciprocal --R --R Continuing to read the file... --R --E 5 --S 6 of 10 asec(0.0) --R --R >> Error detected within library code: --R asec: no reciprocal --R --R Continuing to read the file... --R --E 6 --S 7 of 10 asec(0.5) --R --R >> Error detected within library code: --R acos: argument > 1 in magnitude --R --R Continuing to read the file... --R --E 7 --S 8 of 10 asec(1.0) --R --R (4) 0.0 --R Type: Float --E 8 --S 9 of 10 asec(1.5) --R --R (5) 0.8410686705 6793025577 652 --R Type: Float --E 9 --S 10 of 10 asec(2.0) --R --R (6) 1.0471975511 9659774615 42 --R Type: Float --E 10 )spool )lisp (bye) @ \eject \begin{thebibliography}{99} \bibitem{1} The Encyclopedia of Special Functions http://algo.inria.fr/esf/function/ASC/ASC.html \end{thebibliography} \end{document}