\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input arith.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{bugs} \subsection{bug1} Cannot find a definition or applicable library operation named reduce with argument type(s) Variable * List Segment PositiveInteger <<bug1>>= fac3 10 @ <<bugs>>= )clear all 234+108 234*108 234**108 factor % z := 1/2 v := (z + 1) ** 10 1024 * % u := (x+1)**6 differentiate(u,x) -- factor % )clear all -- compute Fibonacci numbers fib(n | n = 0) == 1 fib(n | n = 1) == 1 fib(n | n > 1) == fib(n-1) + fib(n-2) fib 5 fib 20 )clear all -- compute Legendre polynomials leg(n | n = 0) == 1 leg(n | n = 1) == x leg(n | n > 1) == ((2*n-1)*x*leg(n-1)-(n-1)*leg(n-2))/n leg 3 leg 14 -- look at it as a polynomial with rational number coefficients --% :: POLY FRAC INT )clear all -- several flavors of computing factorial fac1(n | n=1) == 1 fac1(n | n > 1) == n*fac1(n-1) -- fac2 n == if n = 1 then 1 else n*fac2(n-1) -- fac3 n == reduce(*,[1..n]) fac1 10 fac2 10 <<bug1>> @ <<*>>= )clear all 234+108 234*108 234**108 factor % z := 1/2 v := (z + 1) ** 10 1024 * % u := (x+1)**6 differentiate(u,x) -- factor % )clear all -- compute Fibonacci numbers fib(n | n = 0) == 1 fib(n | n = 1) == 1 fib(n | n > 1) == fib(n-1) + fib(n-2) fib 5 fib 20 )clear all -- compute Legendre polynomials leg(n | n = 0) == 1 leg(n | n = 1) == x leg(n | n > 1) == ((2*n-1)*x*leg(n-1)-(n-1)*leg(n-2))/n leg 3 leg 14 -- look at it as a polynomial with rational number coefficients --% :: POLY FRAC INT )clear all -- several flavors of computing factorial fac1(n | n=1) == 1 fac1(n | n > 1) == n*fac1(n-1) -- fac2 n == if n = 1 then 1 else n*fac2(n-1) -- fac3 n == reduce(*,[1..n]) fac1 10 fac2 10 @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}