\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input antoine.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994. @ <<*>>= <<license>> -- Draw Antoine's Necklace -- Thanks to Matt Grayson (formerly at IBM's T.J Watson Research Center) -- for the idea. -- Bring DH matrices into the environment )set expose add con DenavitHartenbergMatrix )read dhtri -- The current transformation for drawing a sub-ring torusRot: DHMATRIX(DoubleFloat) -- Draw Antoine's Rings with n levels of recursive subdivision. -- The number of subrings is 10**n. drawRings(n) == s := create3Space()$ThreeSpace DoubleFloat -- create an identity transformation dh:DHMATRIX(DoubleFloat) := identity() drawRingsInner(s, n, dh) makeViewport3D(s, "Antoine's Necklace") -- Recursively draw Antoine's Necklace. drawRingsInner(s, n, dh) == n = 0 => drawRing(s, dh) void() t := 0.0@DoubleFloat -- the current angle around the ring p := 0.0@DoubleFloat -- the angle of the subring from the plane tr := 1.0@DoubleFloat -- the amount to translate the subring inc := 0.1@DoubleFloat -- translation increment -- subdivide the ring into 10 linked rings for i in 1..10 repeat tr := tr + inc inc := -inc dh' := dh * rotatez(t) * translate(tr, 0.0@DoubleFloat, 0.0@DoubleFloat) * rotatey(p) * scale(0.35@DoubleFloat, 0.48@DoubleFloat, 0.4@DoubleFloat) drawRingsInner(s, n-1, dh') t := t + 36.0@DoubleFloat p := p + 90.0@DoubleFloat void() -- draw a single ring into the given subspace, transformed by the given -- DHMATRIX. drawRing(s, dh) == free torusRot torusRot := dh makeObject(torus, 0..2*%pi, 0..2*%pi, var1Steps == 6, space == s, var2Steps == 15) -- Parameterization of a torus, transformed by the DHMATRIX in torusRot. torus(u ,v) == cu := cos(u)/6 torusRot * point [(1+cu)*cos(v), (1+cu)*sin(v), (sin u)/6] @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}