\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input allfact.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1991. @ <<*>>= <<license>> )cl all -- Examples of all the factor functions in the system. -- factorization of integer numbers n:=45234258258293 factor n -- factorization of gaussian integers m:(Complex Integer) := 1324567+%i*53523582 factor m -- factorization of polynomials over finite fields u:UP(x,PF(19)) :=3*x**4+2*x**2+15*x+18 factor u -- factorization of polynomials over the integers v:UP(x,INT):= (4*x**3+2*x**2+1)*(12*x**5-x**3+12) factor v -- factorization of multivariate polynomial over the integers w:MPOLY([x,y,z],INT) :=(x**2-y**2-z**2)*(x**2+y**2+z**2)*(z*y+3*z) factor w -- factorization of univariate and multivariate over the rational numbers f:MPOLY([x,y,z],FRAC INT) :=(4/9*x**2-1/16)*(x**3/27+125) factor f -- factorization over rational functions g:DMP([x,y],FRAC POLY INT):=a**2*x**2/b**2 -c**2*y**2/d**2 factor g -- decomposition of a rational function r:FRAC POLY INT:= (a**3/b**3-c**3/(b+1)**3)*(a*d+a/c) factorFraction r -- factorization over simple algebraic extensions aa|aa**2+aa+1 p:UP(x,SAEaa) :=(x**3+aa**2*x+1)*(aa*x**2+aa*x+aa)**2 factor(p)$SAEFACT(UP('aa,FRAC INT),SAEaa,UP(x,SAEaa)) -- factorization over algebraic numbers a:=rootOf(a**2+3)$AN factor(x**2+x+1,[a]) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}