\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch1} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull1}{ZeroDimensionalSolvePackageXmpPageEmpty1} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull1}{\hidepaste} \tab{5}\spadcommand{R := Integer\bound{R }} \indentrel{3}\begin{verbatim} (1) Integer Type: Domain \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty1} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty1}{ZeroDimensionalSolvePackageXmpPagePatch1} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty1}{\showpaste} \tab{5}\spadcommand{R := Integer\bound{R }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch2} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull2}{ZeroDimensionalSolvePackageXmpPageEmpty2} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull2}{\hidepaste} \tab{5}\spadcommand{ls : List Symbol := [x,y,z,t]\bound{ls }} \indentrel{3}\begin{verbatim} (2) [x,y,z,t] Type: List Symbol \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty2} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty2}{ZeroDimensionalSolvePackageXmpPagePatch2} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty2}{\showpaste} \tab{5}\spadcommand{ls : List Symbol := [x,y,z,t]\bound{ls }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch3} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull3}{ZeroDimensionalSolvePackageXmpPageEmpty3} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull3}{\hidepaste} \tab{5}\spadcommand{ls2 : List Symbol := [x,y,z,t,new()$Symbol]\bound{ls2 }} \indentrel{3}\begin{verbatim} (3) [x,y,z,t,%A] Type: List Symbol \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty3} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty3}{ZeroDimensionalSolvePackageXmpPagePatch3} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty3}{\showpaste} \tab{5}\spadcommand{ls2 : List Symbol := [x,y,z,t,new()$Symbol]\bound{ls2 }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch4} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull4}{ZeroDimensionalSolvePackageXmpPageEmpty4} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull4}{\hidepaste} \tab{5}\spadcommand{pack := ZDSOLVE(R,ls,ls2)\free{ls }\free{ls2 }\free{R }\bound{pack }} \indentrel{3}\begin{verbatim} (4) ZeroDimensionalSolvePackage(Integer,[x,y,z,t],[x,y,z,t, %A]) Type: Domain \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty4} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty4}{ZeroDimensionalSolvePackageXmpPagePatch4} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty4}{\showpaste} \tab{5}\spadcommand{pack := ZDSOLVE(R,ls,ls2)\free{ls }\free{ls2 }\free{R }\bound{pack }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch5} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull5}{ZeroDimensionalSolvePackageXmpPageEmpty5} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull5}{\hidepaste} \tab{5}\spadcommand{p1 := x**2*y*z + x*y**2*z + x*y*z**2 + x*y*z + x*y + x*z + y*z\bound{p1 }} \indentrel{3}\begin{verbatim} 2 2 2 (5) x y z + (x y + (x + x + 1)y + x)z + x y Type: Polynomial Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty5} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty5}{ZeroDimensionalSolvePackageXmpPagePatch5} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty5}{\showpaste} \tab{5}\spadcommand{p1 := x**2*y*z + x*y**2*z + x*y*z**2 + x*y*z + x*y + x*z + y*z\bound{p1 }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch6} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull6}{ZeroDimensionalSolvePackageXmpPageEmpty6} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull6}{\hidepaste} \tab{5}\spadcommand{p2 := x**2*y**2*z + x*y**2*z**2 + x**2*y*z + x*y*z + y*z + x + z\bound{p2 }} \indentrel{3}\begin{verbatim} 2 2 2 2 2 (6) x y z + (x y + (x + x + 1)y + 1)z + x Type: Polynomial Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty6} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty6}{ZeroDimensionalSolvePackageXmpPagePatch6} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty6}{\showpaste} \tab{5}\spadcommand{p2 := x**2*y**2*z + x*y**2*z**2 + x**2*y*z + x*y*z + y*z + x + z\bound{p2 }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch7} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull7}{ZeroDimensionalSolvePackageXmpPageEmpty7} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull7}{\hidepaste} \tab{5}\spadcommand{p3 := x**2*y**2*z**2 + x**2*y**2*z + x*y**2*z + x*y*z + x*z + z + 1\bound{p3 }} \indentrel{3}\begin{verbatim} 2 2 2 2 2 (7) x y z + ((x + x)y + x y + x + 1)z + 1 Type: Polynomial Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty7} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty7}{ZeroDimensionalSolvePackageXmpPagePatch7} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty7}{\showpaste} \tab{5}\spadcommand{p3 := x**2*y**2*z**2 + x**2*y**2*z + x*y**2*z + x*y*z + x*z + z + 1\bound{p3 }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch8} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull8}{ZeroDimensionalSolvePackageXmpPageEmpty8} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull8}{\hidepaste} \tab{5}\spadcommand{lp := [p1, p2, p3]\free{p1 }\free{p2 }\free{p3 }\bound{lp }} \indentrel{3}\begin{verbatim} (8) 2 2 2 [x y z + (x y + (x + x + 1)y + x)z + x y, 2 2 2 2 2 x y z + (x y + (x + x + 1)y + 1)z + x, 2 2 2 2 2 x y z + ((x + x)y + x y + x + 1)z + 1] Type: List Polynomial Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty8} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty8}{ZeroDimensionalSolvePackageXmpPagePatch8} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty8}{\showpaste} \tab{5}\spadcommand{lp := [p1, p2, p3]\free{p1 }\free{p2 }\free{p3 }\bound{lp }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch9} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull9}{ZeroDimensionalSolvePackageXmpPageEmpty9} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull9}{\hidepaste} \tab{5}\spadcommand{triangSolve(lp)$pack\free{lp }\free{pack }} \indentrel{3}\begin{verbatim} (9) [ { 20 19 18 17 16 15 z - 6z - 41z + 71z + 106z + 92z + 14 13 12 11 10 197z + 145z + 257z + 278z + 201z + 9 8 7 6 5 4 278z + 257z + 145z + 197z + 92z + 106z + 3 2 71z - 41z - 6z + 1 , 19 18 17 14745844z + 50357474z - 130948857z + 16 15 14 - 185261586z - 180077775z - 338007307z + 13 12 11 - 275379623z - 453190404z - 474597456z + 10 9 8 - 366147695z - 481433567z - 430613166z + 7 6 5 - 261878358z - 326073537z - 163008796z + 4 3 2 - 177213227z - 104356755z + 65241699z + 9237732z - 1567348 * y + 19 18 17 1917314z + 6508991z - 16973165z + 16 15 14 - 24000259z - 23349192z - 43786426z + 13 12 11 - 35696474z - 58724172z - 61480792z + 10 9 8 - 47452440z - 62378085z - 55776527z + 7 6 5 - 33940618z - 42233406z - 21122875z + 4 3 2 - 22958177z - 13504569z + 8448317z + 1195888z + - 202934 , 3 2 3 2 2 (z - 2z)y + (- z - z - 2z - 1)y - z - z + 1 * x + 2 z - 1 } ] Type: List RegularChain(Integer,[x,y,z,t]) \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty9} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty9}{ZeroDimensionalSolvePackageXmpPagePatch9} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty9}{\showpaste} \tab{5}\spadcommand{triangSolve(lp)$pack\free{lp }\free{pack }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch10} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull10}{ZeroDimensionalSolvePackageXmpPageEmpty10} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull10}{\hidepaste} \tab{5}\spadcommand{univariateSolve(lp)$pack\free{lp }\free{pack }} \indentrel{3}\begin{verbatim} (10) [ [ complexRoots = 12 11 10 9 8 7 6 ? - 12? + 24? + 4? - 9? + 27? - 21? + 5 4 3 2 27? - 9? + 4? + 24? - 12? + 1 , coordinates = [ 11 10 9 8 63x + 62%A - 721%A + 1220%A + 705%A + 7 6 5 4 3 - 285%A + 1512%A - 735%A + 1401%A - 21%A + 2 215%A + 1577%A - 142 , 11 10 9 8 63y - 75%A + 890%A - 1682%A - 516%A + 7 6 5 4 3 588%A - 1953%A + 1323%A - 1815%A + 426%A + 2 - 243%A - 1801%A + 679 , z - %A] ] , 6 5 4 3 2 [complexRoots= ? + ? + ? + ? + ? + ? + 1, 5 3 coordinates= [x - %A ,y - %A ,z - %A]] , 2 [complexRoots= ? + 5? + 1, coordinates= [x - 1,y - 1,z - %A]] ] Type: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer) \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty10} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty10}{ZeroDimensionalSolvePackageXmpPagePatch10} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty10}{\showpaste} \tab{5}\spadcommand{univariateSolve(lp)$pack\free{lp }\free{pack }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch11} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull11}{ZeroDimensionalSolvePackageXmpPageEmpty11} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull11}{\hidepaste} \tab{5}\spadcommand{lr := realSolve(lp)$pack\free{lp }\free{pack }\bound{lr }} \indentrel{3}\begin{verbatim} (11) [ [%R1, 1184459 19 2335702 18 5460230 17 ������� %R1 - ������� %R1 - ������� %R1 1645371 548457 182819 + 79900378 16 43953929 15 13420192 14 �������� %R1 + �������� %R1 + �������� %R1 1645371 548457 182819 + 553986 13 193381378 12 35978916 11 ������ %R1 + ��������� %R1 + �������� %R1 3731 1645371 182819 + 358660781 10 271667666 9 118784873 8 ��������� %R1 + ��������� %R1 + ��������� %R1 1645371 1645371 548457 + 337505020 7 1389370 6 688291 5 ��������� %R1 + ������� %R1 + ������ %R1 1645371 11193 4459 + 3378002 4 140671876 3 32325724 2 ������� %R1 + ��������� %R1 + �������� %R1 42189 1645371 548457 + 8270 9741532 - ���� %R1 - ������� 343 1645371 , 91729 19 487915 18 4114333 17 - ������ %R1 + ������ %R1 + ������� %R1 705159 705159 705159 + 1276987 16 13243117 15 16292173 14 - ������� %R1 - �������� %R1 - �������� %R1 235053 705159 705159 + 26536060 13 722714 12 5382578 11 - �������� %R1 - ������ %R1 - ������� %R1 705159 18081 100737 + 15449995 10 14279770 9 6603890 8 - �������� %R1 - �������� %R1 - ������� %R1 235053 235053 100737 + 409930 7 37340389 6 34893715 5 - ������ %R1 - �������� %R1 - �������� %R1 6027 705159 705159 + 26686318 4 801511 3 17206178 2 - �������� %R1 - ������ %R1 - �������� %R1 705159 26117 705159 + 4406102 377534 - ������� %R1 + ������ 705159 705159 ] , [%R2, 1184459 19 2335702 18 5460230 17 ������� %R2 - ������� %R2 - ������� %R2 1645371 548457 182819 + 79900378 16 43953929 15 13420192 14 �������� %R2 + �������� %R2 + �������� %R2 1645371 548457 182819 + 553986 13 193381378 12 35978916 11 ������ %R2 + ��������� %R2 + �������� %R2 3731 1645371 182819 + 358660781 10 271667666 9 118784873 8 ��������� %R2 + ��������� %R2 + ��������� %R2 1645371 1645371 548457 + 337505020 7 1389370 6 688291 5 ��������� %R2 + ������� %R2 + ������ %R2 1645371 11193 4459 + 3378002 4 140671876 3 32325724 2 ������� %R2 + ��������� %R2 + �������� %R2 42189 1645371 548457 + 8270 9741532 - ���� %R2 - ������� 343 1645371 , 91729 19 487915 18 4114333 17 - ������ %R2 + ������ %R2 + ������� %R2 705159 705159 705159 + 1276987 16 13243117 15 16292173 14 - ������� %R2 - �������� %R2 - �������� %R2 235053 705159 705159 + 26536060 13 722714 12 5382578 11 - �������� %R2 - ������ %R2 - ������� %R2 705159 18081 100737 + 15449995 10 14279770 9 6603890 8 - �������� %R2 - �������� %R2 - ������� %R2 235053 235053 100737 + 409930 7 37340389 6 34893715 5 - ������ %R2 - �������� %R2 - �������� %R2 6027 705159 705159 + 26686318 4 801511 3 17206178 2 - �������� %R2 - ������ %R2 - �������� %R2 705159 26117 705159 + 4406102 377534 - ������� %R2 + ������ 705159 705159 ] , [%R3, 1184459 19 2335702 18 5460230 17 ������� %R3 - ������� %R3 - ������� %R3 1645371 548457 182819 + 79900378 16 43953929 15 13420192 14 �������� %R3 + �������� %R3 + �������� %R3 1645371 548457 182819 + 553986 13 193381378 12 35978916 11 ������ %R3 + ��������� %R3 + �������� %R3 3731 1645371 182819 + 358660781 10 271667666 9 118784873 8 ��������� %R3 + ��������� %R3 + ��������� %R3 1645371 1645371 548457 + 337505020 7 1389370 6 688291 5 ��������� %R3 + ������� %R3 + ������ %R3 1645371 11193 4459 + 3378002 4 140671876 3 32325724 2 ������� %R3 + ��������� %R3 + �������� %R3 42189 1645371 548457 + 8270 9741532 - ���� %R3 - ������� 343 1645371 , 91729 19 487915 18 4114333 17 - ������ %R3 + ������ %R3 + ������� %R3 705159 705159 705159 + 1276987 16 13243117 15 16292173 14 - ������� %R3 - �������� %R3 - �������� %R3 235053 705159 705159 + 26536060 13 722714 12 5382578 11 - �������� %R3 - ������ %R3 - ������� %R3 705159 18081 100737 + 15449995 10 14279770 9 6603890 8 - �������� %R3 - �������� %R3 - ������� %R3 235053 235053 100737 + 409930 7 37340389 6 34893715 5 - ������ %R3 - �������� %R3 - �������� %R3 6027 705159 705159 + 26686318 4 801511 3 17206178 2 - �������� %R3 - ������ %R3 - �������� %R3 705159 26117 705159 + 4406102 377534 - ������� %R3 + ������ 705159 705159 ] , [%R4, 1184459 19 2335702 18 5460230 17 ������� %R4 - ������� %R4 - ������� %R4 1645371 548457 182819 + 79900378 16 43953929 15 13420192 14 �������� %R4 + �������� %R4 + �������� %R4 1645371 548457 182819 + 553986 13 193381378 12 35978916 11 ������ %R4 + ��������� %R4 + �������� %R4 3731 1645371 182819 + 358660781 10 271667666 9 118784873 8 ��������� %R4 + ��������� %R4 + ��������� %R4 1645371 1645371 548457 + 337505020 7 1389370 6 688291 5 ��������� %R4 + ������� %R4 + ������ %R4 1645371 11193 4459 + 3378002 4 140671876 3 32325724 2 ������� %R4 + ��������� %R4 + �������� %R4 42189 1645371 548457 + 8270 9741532 - ���� %R4 - ������� 343 1645371 , 91729 19 487915 18 4114333 17 - ������ %R4 + ������ %R4 + ������� %R4 705159 705159 705159 + 1276987 16 13243117 15 16292173 14 - ������� %R4 - �������� %R4 - �������� %R4 235053 705159 705159 + 26536060 13 722714 12 5382578 11 - �������� %R4 - ������ %R4 - ������� %R4 705159 18081 100737 + 15449995 10 14279770 9 6603890 8 - �������� %R4 - �������� %R4 - ������� %R4 235053 235053 100737 + 409930 7 37340389 6 34893715 5 - ������ %R4 - �������� %R4 - �������� %R4 6027 705159 705159 + 26686318 4 801511 3 17206178 2 - �������� %R4 - ������ %R4 - �������� %R4 705159 26117 705159 + 4406102 377534 - ������� %R4 + ������ 705159 705159 ] , [%R5, 1184459 19 2335702 18 5460230 17 ������� %R5 - ������� %R5 - ������� %R5 1645371 548457 182819 + 79900378 16 43953929 15 13420192 14 �������� %R5 + �������� %R5 + �������� %R5 1645371 548457 182819 + 553986 13 193381378 12 35978916 11 ������ %R5 + ��������� %R5 + �������� %R5 3731 1645371 182819 + 358660781 10 271667666 9 118784873 8 ��������� %R5 + ��������� %R5 + ��������� %R5 1645371 1645371 548457 + 337505020 7 1389370 6 688291 5 ��������� %R5 + ������� %R5 + ������ %R5 1645371 11193 4459 + 3378002 4 140671876 3 32325724 2 ������� %R5 + ��������� %R5 + �������� %R5 42189 1645371 548457 + 8270 9741532 - ���� %R5 - ������� 343 1645371 , 91729 19 487915 18 4114333 17 - ������ %R5 + ������ %R5 + ������� %R5 705159 705159 705159 + 1276987 16 13243117 15 16292173 14 - ������� %R5 - �������� %R5 - �������� %R5 235053 705159 705159 + 26536060 13 722714 12 5382578 11 - �������� %R5 - ������ %R5 - ������� %R5 705159 18081 100737 + 15449995 10 14279770 9 6603890 8 - �������� %R5 - �������� %R5 - ������� %R5 235053 235053 100737 + 409930 7 37340389 6 34893715 5 - ������ %R5 - �������� %R5 - �������� %R5 6027 705159 705159 + 26686318 4 801511 3 17206178 2 - �������� %R5 - ������ %R5 - �������� %R5 705159 26117 705159 + 4406102 377534 - ������� %R5 + ������ 705159 705159 ] , [%R6, 1184459 19 2335702 18 5460230 17 ������� %R6 - ������� %R6 - ������� %R6 1645371 548457 182819 + 79900378 16 43953929 15 13420192 14 �������� %R6 + �������� %R6 + �������� %R6 1645371 548457 182819 + 553986 13 193381378 12 35978916 11 ������ %R6 + ��������� %R6 + �������� %R6 3731 1645371 182819 + 358660781 10 271667666 9 118784873 8 ��������� %R6 + ��������� %R6 + ��������� %R6 1645371 1645371 548457 + 337505020 7 1389370 6 688291 5 ��������� %R6 + ������� %R6 + ������ %R6 1645371 11193 4459 + 3378002 4 140671876 3 32325724 2 ������� %R6 + ��������� %R6 + �������� %R6 42189 1645371 548457 + 8270 9741532 - ���� %R6 - ������� 343 1645371 , 91729 19 487915 18 4114333 17 - ������ %R6 + ������ %R6 + ������� %R6 705159 705159 705159 + 1276987 16 13243117 15 16292173 14 - ������� %R6 - �������� %R6 - �������� %R6 235053 705159 705159 + 26536060 13 722714 12 5382578 11 - �������� %R6 - ������ %R6 - ������� %R6 705159 18081 100737 + 15449995 10 14279770 9 6603890 8 - �������� %R6 - �������� %R6 - ������� %R6 235053 235053 100737 + 409930 7 37340389 6 34893715 5 - ������ %R6 - �������� %R6 - �������� %R6 6027 705159 705159 + 26686318 4 801511 3 17206178 2 - �������� %R6 - ������ %R6 - �������� %R6 705159 26117 705159 + 4406102 377534 - ������� %R6 + ������ 705159 705159 ] , [%R7, 1184459 19 2335702 18 5460230 17 ������� %R7 - ������� %R7 - ������� %R7 1645371 548457 182819 + 79900378 16 43953929 15 13420192 14 �������� %R7 + �������� %R7 + �������� %R7 1645371 548457 182819 + 553986 13 193381378 12 35978916 11 ������ %R7 + ��������� %R7 + �������� %R7 3731 1645371 182819 + 358660781 10 271667666 9 118784873 8 ��������� %R7 + ��������� %R7 + ��������� %R7 1645371 1645371 548457 + 337505020 7 1389370 6 688291 5 ��������� %R7 + ������� %R7 + ������ %R7 1645371 11193 4459 + 3378002 4 140671876 3 32325724 2 ������� %R7 + ��������� %R7 + �������� %R7 42189 1645371 548457 + 8270 9741532 - ���� %R7 - ������� 343 1645371 , 91729 19 487915 18 4114333 17 - ������ %R7 + ������ %R7 + ������� %R7 705159 705159 705159 + 1276987 16 13243117 15 16292173 14 - ������� %R7 - �������� %R7 - �������� %R7 235053 705159 705159 + 26536060 13 722714 12 5382578 11 - �������� %R7 - ������ %R7 - ������� %R7 705159 18081 100737 + 15449995 10 14279770 9 6603890 8 - �������� %R7 - �������� %R7 - ������� %R7 235053 235053 100737 + 409930 7 37340389 6 34893715 5 - ������ %R7 - �������� %R7 - �������� %R7 6027 705159 705159 + 26686318 4 801511 3 17206178 2 - �������� %R7 - ������ %R7 - �������� %R7 705159 26117 705159 + 4406102 377534 - ������� %R7 + ������ 705159 705159 ] , [%R8, 1184459 19 2335702 18 5460230 17 ������� %R8 - ������� %R8 - ������� %R8 1645371 548457 182819 + 79900378 16 43953929 15 13420192 14 �������� %R8 + �������� %R8 + �������� %R8 1645371 548457 182819 + 553986 13 193381378 12 35978916 11 ������ %R8 + ��������� %R8 + �������� %R8 3731 1645371 182819 + 358660781 10 271667666 9 118784873 8 ��������� %R8 + ��������� %R8 + ��������� %R8 1645371 1645371 548457 + 337505020 7 1389370 6 688291 5 ��������� %R8 + ������� %R8 + ������ %R8 1645371 11193 4459 + 3378002 4 140671876 3 32325724 2 ������� %R8 + ��������� %R8 + �������� %R8 42189 1645371 548457 + 8270 9741532 - ���� %R8 - ������� 343 1645371 , 91729 19 487915 18 4114333 17 - ������ %R8 + ������ %R8 + ������� %R8 705159 705159 705159 + 1276987 16 13243117 15 16292173 14 - ������� %R8 - �������� %R8 - �������� %R8 235053 705159 705159 + 26536060 13 722714 12 5382578 11 - �������� %R8 - ������ %R8 - ������� %R8 705159 18081 100737 + 15449995 10 14279770 9 6603890 8 - �������� %R8 - �������� %R8 - ������� %R8 235053 235053 100737 + 409930 7 37340389 6 34893715 5 - ������ %R8 - �������� %R8 - �������� %R8 6027 705159 705159 + 26686318 4 801511 3 17206178 2 - �������� %R8 - ������ %R8 - �������� %R8 705159 26117 705159 + 4406102 377534 - ������� %R8 + ������ 705159 705159 ] ] Type: List List RealClosure Fraction Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty11} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty11}{ZeroDimensionalSolvePackageXmpPagePatch11} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty11}{\showpaste} \tab{5}\spadcommand{lr := realSolve(lp)$pack\free{lp }\free{pack }\bound{lr }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch12} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull12}{ZeroDimensionalSolvePackageXmpPageEmpty12} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull12}{\hidepaste} \tab{5}\spadcommand{\# lr\free{lr }} \indentrel{3}\begin{verbatim} (12) 8 Type: PositiveInteger \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty12} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty12}{ZeroDimensionalSolvePackageXmpPagePatch12} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty12}{\showpaste} \tab{5}\spadcommand{\# lr\free{lr }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch13} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull13}{ZeroDimensionalSolvePackageXmpPageEmpty13} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull13}{\hidepaste} \tab{5}\spadcommand{[[approximate(r,1/1000000) for r in point] for point in lr]\free{lr }} \indentrel{3}\begin{verbatim} (13) [ 10048059 [- ��������, 2097152 450305731698538794352439791383896641459673197621_ 17682193358812083855163140589245671760914236296_ 95777403099833360761048898228916578137094309838_ 59733113720258484693913237615701950676035760116_ 59174549868153820987890948515234203928112931261_ 41329856546977145464661495487825919941188447041_ 72244049192156726354215802806143775884436463441_ 0045253024786561923163288214175 / 450305728302524548851651180698582663508310069375_ 73204652805547068656449495775099168672018894380_ 90408354817931718593862797624551518983570793048_ 77442429148870882984032418920030143612331486020_ 08214437337907553112436329198648954217042289495_ 71290016119498807957023663865443069392027148979_ 68826671232335604349152343406892427528041733857_ 4817381189277066143312396681216 , 210626076882347507389479868048601659624960714869_ 06855387636837150206396808586496507900558895056_ 46893309447097099937802187329095325898785247249_ 02071750498366048207515661873872451468533306001_ 12029646351663813515432559822002503052839810868_ 37110614842307026091211297929876896285681830479_ 05476005638076266490561846205530604781619178201_ 15887037891389881895 / 210626060949846419247211380481647417534196295329_ 64341024139031423687579676852738885855909759652_ 11778862189872881953943640246297357061959812326_ 10365979902512686325867656720234210687703171018_ 42474841814232889218376812370627084702957062184_ 85928867400771937828499200923760593314168901000_ 66637389634759811822855673103707202647449677622_ 83837629939232800768 ] , 2563013 [- �������, 2097152 - 261134617679192778969861769323775771923825996_ 30635417819227523304401898996680729283384907_ 68623593207442125925986733815932243504809294_ 83752303023733723680666816744617300172727135_ 3311571242897 / 116522540050522253058398191600458914375722661_ 02768589900087901348199149409224137539839713_ 94019523433320408139928153188829495755455163_ 96341761930839597754479714023146923426903492_ 1938055593984 , 357259455027591722109658872961578827299851705467_ 56032395781981410060340917352828265906219023044_ 66963941971038923304526273329316373757450061978_ 9892286110976997087250466235373 / 103954826934559893687707124483402605580081455112_ 01705922005223665917594096594864423391410294529_ 50265179989960104811875822530205346505131581243_ 9017247289173865014702966308864 ] , 1715967 [- �������, 2097152 - 421309353378430352108483951797708239037726150_ 39695862248289984366060306560763593745648137_ 73498376603121267822565801436206939519951465_ 18222580524697287410022543952491 / 944181414418537445864969203434922405243659747_ 09662536639306419607958058825854931998401916_ 99917659443264824641135187383583888147867340_ 19307857605820364195856822304768 , 763583334711264422251562542441083122534747566900_ 85893388341621725019049943763467308768090428452_ 08919919925302105720971453918982731389072591403_ 5 / 262418876408609719978429761047806663393423046789_ 58516022785809785037845492057884990196406022669_ 66026891580103543567625039018629887141284916756_ 48 ] , 437701 [- �������, 2097152 168310690863834958832217233265422591356298631318_ 19510314527501614414974734553281507213648683555_ 79646781603507777199075077835213366484533654913_ 83623741304759 / 168310686809521338900170998270591363896307766873_ 12261111677851880049074252262986803258878109626_ 14140298597366984264887998908377068799998454233_ 81649008099328 , 496155010983501018642268101342210873595871480100_ 37606397079680966469128267084728344431172391721_ 9104249213450966312411133 / 496154987275773831550919207821020902985289711861_ 10971262363840408293765926191431317025486746479_ 2718363492160482442215424 ] , 222801 [�������, 2097152 - 899488488040242826510759512197069142713604569_ 25419782755730018652137599215881377166961263_ 49101655220195142994932299137183241705867672_ 383477 / 116788999866502637217776510069188858270896996_ 02299347696908357524570777794164352094737678_ 66507769405888942764587718542434255625992456_ 372224 , - 238970488813315687832080154437380839561277150_ 92084910198474529918855095465195254678390166_ 13593999693886640036283570552321155037871291_ 458703265 / 535548727364509632609040328668993190598822544_ 46854114332215938336811929575628336714686542_ 90340746993656285925599117602120446183443145_ 479421952 ] , 765693 [�������, 2097152 855896921981671626787324476117819808872469895861_ 66701402137657543220023032516857861186783308402_ 03328837654339523418704917749518340772512899000_ 391009630373148561 / 294144244553301079097642841137639349981558021594_ 58569179064525354957230138568189417023302287798_ 90141296236721138154231997238917322156711965244_ 4639331719460159488 , - 205761823058257210124765032486024256111130258_ 15435888088439236627675493822416593627122907_ 77612800192921420574408948085193743688582762_ 2246433251878894899015 / 267159820332573553809795235350145022057631375_ 98908350970917225206427101987719026671839489_ 06289863714759678360292483949204616471537777_ 775324180661095366656 ] , 5743879 [�������, 2097152 107628881696890684795554639477357020817145672494_ 26186140236631235747689608504342639713980725465_ 92772662158833449797698617455397887562900072984_ 76800060834355318980169340872720504761255988923_ 27575638305286889535354218094827710589175426028_ 90060941949620874083007858366669453501766248414_ 88732463225 / 313176895708031794664846194002355204419037661345_ 85849862285496319161966016162197817656155325322_ 94746529648276430583810894079374566460757823146_ 88858119555602920851521883888320031865840746939_ 94260632605898286123092315966691297079864813198_ 51571942927230340622934023923486703042068153044_ 0845099008 , - 211328669918575091836412047556545843787017248_ 98654859943898281353352644446652845575264927_ 34931691731407872701432935503473348172076098_ 72054584900878007756416053431789468836611952_ 97399805029441626685500981279619504962102219_ 42878089359674925850594427768502251789758706_ 752831632503615 / 162761558493798758024290662434710458088914446_ 61684597180431538394083725255333098080703636_ 99585502216011211087103263609551026027769414_ 08739114812622116813978168258743807532259146_ 61319399754572005223498385689642856344480185_ 62038272378787354460106106141518010935617205_ 1706396253618176 ] , 19739877 [��������, 2097152 - 299724993683270330379901580486152094921504038_ 75007071777012857667201925305794224789535660_ 24359860143101547801638082771611160372212874_ 84777803580987284314922548423836585801362934_ 17053217025823333509180096017899370239859353_ 04900460493389873837030853410347089908880814_ 85398113201846458245880061539477074169948729_ 58759602107502158919488144768548710315309312_ 95467332190133702671098200902282300510751860_ 71859284570302778073977965258138627622392869_ 96106809728023675 / 230843327485227859072891008119181102390650414_ 13214326461239367948739333192706089607021381_ 93417647898360620229519176632937631786851455_ 01476602720625902225250555174182368889688380_ 66366025744317604722402920931967294751602472_ 68834121141893318848728661844434927287285112_ 89708076755286489505658586403317856591038706_ 50061128015164035227410373609905560544769495_ 27059227070809593049491257519554708879259595_ 52929920110858560812556635485429471554031675_ 979542656381353984 , - 512818926354822848909627639786894008060093841_ 06630804594079663358450092641094905204598253_ 16250084723010047035024497436523038925818959_ 28931293158470135392762143543439867426304729_ 39091228501338519906964902315660943719943337_ 95070782624011727587749989296611277318372294_ 62420711653791043655457414608288470130554391_ 26204193548854107359401577758966028223645758_ 64611831512943973974715166920465061850603762_ 87516256195847052412587282839139194642913955 / 228828193977843933053120879318129047118363109_ 24553689903863908242435094636442362497730806_ 47438987739144921607794682653851741189091711_ 74186814511497833728419182249767586835872948_ 66447308566225526872092037244118004814057028_ 37198310642291275676195774614443815996713502_ 62939174978359004147086012775237299648862774_ 26724876224800632688088893248918508424949343_ 47337603075939980268208482904859678177751444_ 65749979827872616963053217673201717237252096 ] ] Type: List List Fraction Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty13} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty13}{ZeroDimensionalSolvePackageXmpPagePatch13} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty13}{\showpaste} \tab{5}\spadcommand{[[approximate(r,1/1000000) for r in point] for point in lr]\free{lr }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch14} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull14}{ZeroDimensionalSolvePackageXmpPageEmpty14} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull14}{\hidepaste} \tab{5}\spadcommand{lpr := positiveSolve(lp)$pack\free{lp }\free{pack }\bound{lpr }} \indentrel{3}\begin{verbatim} (14) [] Type: List List RealClosure Fraction Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty14} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty14}{ZeroDimensionalSolvePackageXmpPagePatch14} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty14}{\showpaste} \tab{5}\spadcommand{lpr := positiveSolve(lp)$pack\free{lp }\free{pack }\bound{lpr }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch15} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull15}{ZeroDimensionalSolvePackageXmpPageEmpty15} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull15}{\hidepaste} \tab{5}\spadcommand{f0 := x**3 + y + z + t- 1\bound{f0 }} \indentrel{3}\begin{verbatim} 3 (15) z + y + x + t - 1 Type: Polynomial Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty15} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty15}{ZeroDimensionalSolvePackageXmpPagePatch15} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty15}{\showpaste} \tab{5}\spadcommand{f0 := x**3 + y + z + t- 1\bound{f0 }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch16} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull16}{ZeroDimensionalSolvePackageXmpPageEmpty16} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull16}{\hidepaste} \tab{5}\spadcommand{f1 := x + y**3 + z + t -1\bound{f1 }} \indentrel{3}\begin{verbatim} 3 (16) z + y + x + t - 1 Type: Polynomial Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty16} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty16}{ZeroDimensionalSolvePackageXmpPagePatch16} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty16}{\showpaste} \tab{5}\spadcommand{f1 := x + y**3 + z + t -1\bound{f1 }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch17} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull17}{ZeroDimensionalSolvePackageXmpPageEmpty17} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull17}{\hidepaste} \tab{5}\spadcommand{f2 := x + y + z**3 + t-1\bound{f2 }} \indentrel{3}\begin{verbatim} 3 (17) z + y + x + t - 1 Type: Polynomial Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty17} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty17}{ZeroDimensionalSolvePackageXmpPagePatch17} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty17}{\showpaste} \tab{5}\spadcommand{f2 := x + y + z**3 + t-1\bound{f2 }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch18} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull18}{ZeroDimensionalSolvePackageXmpPageEmpty18} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull18}{\hidepaste} \tab{5}\spadcommand{f3 := x + y + z + t**3 -1\bound{f3 }} \indentrel{3}\begin{verbatim} 3 (18) z + y + x + t - 1 Type: Polynomial Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty18} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty18}{ZeroDimensionalSolvePackageXmpPagePatch18} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty18}{\showpaste} \tab{5}\spadcommand{f3 := x + y + z + t**3 -1\bound{f3 }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch19} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull19}{ZeroDimensionalSolvePackageXmpPageEmpty19} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull19}{\hidepaste} \tab{5}\spadcommand{lf := [f0, f1, f2, f3]\free{f0 }\free{f1 }\free{f2 }\free{f3 }\bound{lf }} \indentrel{3}\begin{verbatim} (19) 3 3 [z + y + x + t - 1, z + y + x + t - 1, 3 3 z + y + x + t - 1, z + y + x + t - 1] Type: List Polynomial Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty19} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty19}{ZeroDimensionalSolvePackageXmpPagePatch19} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty19}{\showpaste} \tab{5}\spadcommand{lf := [f0, f1, f2, f3]\free{f0 }\free{f1 }\free{f2 }\free{f3 }\bound{lf }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch20} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull20}{ZeroDimensionalSolvePackageXmpPageEmpty20} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull20}{\hidepaste} \tab{5}\spadcommand{lts := triangSolve(lf)$pack\free{lf }\free{pack }\bound{lts }} \indentrel{3}\begin{verbatim} (20) [ 2 3 3 {t + t + 1, z - z - t + t, 3 2 (3z + 3t - 3)y + 2 3 6 3 3 2 (3z + (6t - 6)z + 3t - 6t + 3)y + (3t - 3)z + 6 3 9 6 3 (3t - 6t + 3)z + t - 3t + 5t - 3t , x + y + z} , 16 13 10 7 4 2 {t - 6t + 9t + 4t + 15t - 54t + 27, 15 14 13 4907232t + 40893984t - 115013088t + 12 11 10 22805712t + 36330336t + 162959040t + 9 8 7 - 159859440t - 156802608t + 117168768t + 6 5 4 126282384t - 129351600t + 306646992t + 3 2 475302816t - 1006837776t - 237269088t + 480716208 * z + 54 51 48 46 45 48t - 912t + 8232t - 72t - 46848t + 43 42 40 39 1152t + 186324t - 3780t - 543144t + 38 37 36 35 - 3168t - 21384t + 1175251t + 41184t + 34 33 32 31 278003t - 1843242t - 301815t - 1440726t + 30 29 28 27 1912012t + 1442826t + 4696262t - 922481t + 26 25 24 - 4816188t - 10583524t - 208751t + 23 22 21 11472138t + 16762859t - 857663t + 20 19 18 - 19328175t - 18270421t + 4914903t + 17 16 15 22483044t + 12926517t - 8605511t + 14 13 12 - 17455518t - 5014597t + 8108814t + 11 10 9 8 8465535t + 190542t - 4305624t - 2226123t + 7 6 5 4 661905t + 1169775t + 226260t - 209952t + 3 - 141183t + 27216t , 3 2 (3z + 3t - 3)y + 2 3 6 3 3 2 (3z + (6t - 6)z + 3t - 6t + 3)y + (3t - 3)z + 6 3 9 6 3 (3t - 6t + 3)z + t - 3t + 5t - 3t , 3 x + y + z + t - 1} , 2 2 {t,z - 1,y - 1,x + y}, {t - 1,z,y - 1,x + y}, 2 {t - 1,z - 1,z y + 1,x}, 16 13 10 7 4 2 {t - 6t + 9t + 4t + 15t - 54t + 27, 29 28 27 4907232t + 40893984t - 115013088t + 26 25 24 - 1730448t - 168139584t + 738024480t + 23 22 21 - 195372288t + 315849456t - 2567279232t + 20 19 18 937147968t + 1026357696t + 4780488240t + 17 16 - 2893767696t - 5617160352t + 15 14 - 3427651728t + 5001100848t + 13 12 11 8720098416t + 2331732960t - 499046544t + 10 9 - 16243306272t - 9748123200t + 8 7 6 3927244320t + 25257280896t + 10348032096t + 5 4 3 - 17128672128t - 14755488768t + 544086720t + 2 10848188736t + 1423614528t - 2884297248 * z + 68 65 62 60 59 - 48t + 1152t - 13560t + 360t + 103656t + 57 56 54 53 - 7560t - 572820t + 71316t + 2414556t + 52 51 50 49 2736t - 402876t - 7985131t - 49248t + 48 47 46 45 1431133t + 20977409t + 521487t - 2697635t + 44 43 42 - 43763654t - 3756573t - 2093410t + 41 40 39 71546495t + 19699032t + 35025028t + 38 37 36 - 89623786t - 77798760t - 138654191t + 35 34 33 87596128t + 235642497t + 349607642t + 32 31 30 - 93299834t - 551563167t - 630995176t + 29 28 27 186818962t + 995427468t + 828416204t + 26 25 24 - 393919231t - 1076617485t - 1609479791t + 23 22 21 595738126t + 1198787136t + 4342832069t + 20 19 18 - 2075938757t - 4390835799t - 4822843033t + 17 16 15 6932747678t + 6172196808t + 1141517740t + 14 13 12 - 4981677585t - 9819815280t - 7404299976t + 11 10 9 - 157295760t + 29124027630t + 14856038208t + 8 7 6 - 16184101410t - 26935440354t - 3574164258t + 5 4 3 10271338974t + 11191425264t + 6869861262t + 2 - 9780477840t - 3586674168t + 2884297248 , 3 3 2 6 3 9 3z + (6t - 6)z + (6t - 12t + 3)z + 2t + 6 3 - 6t + t + 3t * y + 3 3 6 3 2 (3t - 3)z + (6t - 12t + 6)z + 9 6 3 12 9 6 3 (4t - 12t + 11t - 3)z + t - 4t + 5t - 2t , 3 x + y + z + t - 1} , 2 {t - 1,z - 1,y,x + z}, 8 7 6 5 4 3 2 {t + t + t - 2t - 2t - 2t + 19t + 19t - 8, 7 6 5 2395770t + 3934440t - 3902067t + 4 3 2 - 10084164t - 1010448t + 32386932t + 22413225t - 10432368 * z + 7 6 5 4 - 463519t + 3586833t + 9494955t - 8539305t + 3 2 - 33283098t + 35479377t + 46263256t - 17419896 , 4 3 3 6 3 2 3z + (9t - 9)z + (12t - 24t + 9)z + 3 6 4 3 (- 152t + 219t - 67)z - 41t + 57t + 25t + - 57t + 16 * y + 3 4 6 3 3 (3t - 3)z + (9t - 18t + 9)z + 3 2 (- 181t + 270t - 89)z + 6 4 3 7 (- 92t + 135t + 49t - 135t + 43)z + 27t + 6 4 3 - 27t - 54t + 396t - 486t + 144 , 3 x + y + z + t - 1} , 3 {t,z - t + 1,y - 1,x - 1}, {t - 1,z,y,x}, {t,z - 1,y,x}, {t,z,y - 1,x}, {t,z,y,x - 1}] Type: List RegularChain(Integer,[x,y,z,t]) \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty20} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty20}{ZeroDimensionalSolvePackageXmpPagePatch20} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty20}{\showpaste} \tab{5}\spadcommand{lts := triangSolve(lf)$pack\free{lf }\free{pack }\bound{lts }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch21} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull21}{ZeroDimensionalSolvePackageXmpPageEmpty21} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull21}{\hidepaste} \tab{5}\spadcommand{univariateSolve(lf)$pack\free{lf }\free{pack }} \indentrel{3}\begin{verbatim} (21) [ [complexRoots= ?, coordinates= [x - 1,y - 1,z + 1,t - %A]] , [complexRoots= ?,coordinates= [x,y - 1,z,t - %A]], [complexRoots= ? - 1,coordinates= [x,y,z,t - %A]], [complexRoots= ?,coordinates= [x - 1,y,z,t - %A]], [complexRoots= ?,coordinates= [x,y,z - 1,t - %A]], [complexRoots= ? - 2, coordinates= [x - 1,y + 1,z,t - 1]] , [complexRoots= ?,coordinates= [x + 1,y - 1,z,t - 1]], [complexRoots= ? - 1, coordinates= [x - 1,y + 1,z - 1,t]] , [complexRoots= ? + 1, coordinates= [x + 1,y - 1,z - 1,t]] , 6 3 2 [complexRoots= ? - 2? + 3? - 3, coordinates = 3 3 [2x + %A + %A - 1, 2y + %A + %A - 1, z - %A, t - %A] ] , 5 3 2 [complexRoots= ? + 3? - 2? + 3? - 3, coordinates = 3 [x - %A,y - %A,z + %A + 2%A - 1,t - %A] ] , 4 3 2 [complexRoots= ? - ? - 2? + 3, coordinates = 3 3 [x + %A - %A - 1, y + %A - %A - 1, 3 z - %A + 2%A + 1, t - %A] ] , [complexRoots= ? + 1, coordinates= [x - 1,y - 1,z,t - %A]] , 6 3 2 [complexRoots= ? + 2? + 3? - 3, coordinates = 3 3 [2x - %A - %A - 1, y + %A, 2z - %A - %A - 1, t + %A] ] , 6 4 3 2 [complexRoots= ? + 12? + 20? - 45? - 42? - 953, coordinates = [ 5 4 3 2 12609x + 23%A + 49%A - 46%A + 362%A + - 5015%A - 8239 , 5 4 3 2 25218y + 23%A + 49%A - 46%A + 362%A + 7594%A - 8239 , 5 4 3 2 25218z + 23%A + 49%A - 46%A + 362%A + 7594%A - 8239 , 5 4 3 2 12609t + 23%A + 49%A - 46%A + 362%A + - 5015%A - 8239 ] ] , 5 3 2 [complexRoots= ? + 12? - 16? + 48? - 96, coordinates = 3 [8x + %A + 8%A - 8,2y - %A,2z - %A,2t - %A] ] , 5 4 3 2 [complexRoots= ? + ? - 5? - 3? + 9? + 3, coordinates = 3 3 [2x - %A + 2%A - 1, 2y + %A - 4%A + 1, 3 3 2z - %A + 2%A - 1, 2t - %A + 2%A - 1] ] , 4 3 2 [complexRoots= ? - 3? + 4? - 6? + 13, coordinates = 3 2 [9x - 2%A + 4%A - %A + 2, 3 2 9y + %A - 2%A + 5%A - 1, 3 2 9z + %A - 2%A + 5%A - 1, 3 2 9t + %A - 2%A - 4%A - 1] ] , 4 2 [complexRoots= ? - 11? + 37, coordinates = 2 2 2 [3x - %A + 7, 6y + %A + 3%A - 7, 3z - %A + 7, 2 6t + %A - 3%A - 7] ] , [complexRoots= ? + 1, coordinates= [x - 1,y,z - 1,t + 1]] , [complexRoots= ? + 2, coordinates= [x,y - 1,z - 1,t + 1]] , [complexRoots= ? - 2, coordinates= [x,y - 1,z + 1,t - 1]] , [complexRoots= ?,coordinates= [x,y + 1,z - 1,t - 1]], [complexRoots= ? - 2, coordinates= [x - 1,y,z + 1,t - 1]] , [complexRoots= ?,coordinates= [x + 1,y,z - 1,t - 1]], 4 3 2 [complexRoots= ? + 5? + 16? + 30? + 57, coordinates = 3 2 [151x + 15%A + 54%A + 104%A + 93, 3 2 151y - 10%A - 36%A - 19%A - 62, 3 2 151z - 5%A - 18%A - 85%A - 31, 3 2 151t - 5%A - 18%A - 85%A - 31] ] , 4 3 2 [complexRoots= ? - ? - 2? + 3, coordinates = 3 3 [x - %A + 2%A + 1, y + %A - %A - 1, z - %A, 3 t + %A - %A - 1] ] , 4 3 2 [complexRoots= ? + 2? - 8? + 48, coordinates = 3 [8x - %A + 4%A - 8, 2y + %A, 3 3 8z + %A - 8%A + 8, 8t - %A + 4%A - 8] ] , 5 4 3 2 [complexRoots= ? + ? - 2? - 4? + 5? + 8, coordinates = 3 3 3 [3x + %A - 1,3y + %A - 1,3z + %A - 1,t - %A] ] , 3 [complexRoots= ? + 3? - 1, coordinates= [x - %A,y - %A,z - %A,t - %A]] ] Type: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer) \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty21} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty21}{ZeroDimensionalSolvePackageXmpPagePatch21} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty21}{\showpaste} \tab{5}\spadcommand{univariateSolve(lf)$pack\free{lf }\free{pack }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch22} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull22}{ZeroDimensionalSolvePackageXmpPageEmpty22} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull22}{\hidepaste} \tab{5}\spadcommand{ts := lts.1\free{lts }\bound{ts }} \indentrel{3}\begin{verbatim} (22) 2 3 3 {t + t + 1, z - z - t + t, 3 2 (3z + 3t - 3)y + 2 3 6 3 3 2 (3z + (6t - 6)z + 3t - 6t + 3)y + (3t - 3)z + 6 3 9 6 3 (3t - 6t + 3)z + t - 3t + 5t - 3t , x + y + z} Type: RegularChain(Integer,[x,y,z,t]) \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty22} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty22}{ZeroDimensionalSolvePackageXmpPagePatch22} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty22}{\showpaste} \tab{5}\spadcommand{ts := lts.1\free{lts }\bound{ts }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch23} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull23}{ZeroDimensionalSolvePackageXmpPageEmpty23} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull23}{\hidepaste} \tab{5}\spadcommand{univariateSolve(ts)$pack\free{ts }\free{pack }} \indentrel{3}\begin{verbatim} (23) [ 4 3 2 [complexRoots= ? + 5? + 16? + 30? + 57, coordinates = 3 2 [151x + 15%A + 54%A + 104%A + 93, 3 2 151y - 10%A - 36%A - 19%A - 62, 3 2 151z - 5%A - 18%A - 85%A - 31, 3 2 151t - 5%A - 18%A - 85%A - 31] ] , 4 3 2 [complexRoots= ? - ? - 2? + 3, coordinates = 3 3 [x - %A + 2%A + 1, y + %A - %A - 1, z - %A, 3 t + %A - %A - 1] ] , 4 3 2 [complexRoots= ? + 2? - 8? + 48, coordinates = 3 [8x - %A + 4%A - 8, 2y + %A, 3 3 8z + %A - 8%A + 8, 8t - %A + 4%A - 8] ] ] Type: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer) \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty23} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty23}{ZeroDimensionalSolvePackageXmpPagePatch23} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty23}{\showpaste} \tab{5}\spadcommand{univariateSolve(ts)$pack\free{ts }\free{pack }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch24} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull24}{ZeroDimensionalSolvePackageXmpPageEmpty24} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull24}{\hidepaste} \tab{5}\spadcommand{realSolve(ts)$pack\free{ts }\free{pack }} \indentrel{3}\begin{verbatim} (24) [] Type: List List RealClosure Fraction Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty24} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty24}{ZeroDimensionalSolvePackageXmpPagePatch24} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty24}{\showpaste} \tab{5}\spadcommand{realSolve(ts)$pack\free{ts }\free{pack }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch25} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull25}{ZeroDimensionalSolvePackageXmpPageEmpty25} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull25}{\hidepaste} \tab{5}\spadcommand{lr2 := realSolve(lf)$pack\free{lf }\free{pack }\bound{lr2 }} \indentrel{3}\begin{verbatim} (25) [[0,- 1,1,1], [0,0,1,0], [1,0,0,0], [0,0,0,1], [0,1,0,0], [1,0,%R37,- %R37], [1,0,%R38,- %R38], [0,1,%R35,- %R35], [0,1,%R36,- %R36], [- 1,0,1,1], [%R32, 1 15 2 14 1 13 4 12 �� %R32 + �� %R32 + �� %R32 - �� %R32 27 27 27 27 + 11 11 4 10 1 9 14 8 - �� %R32 - �� %R32 + �� %R32 + �� %R32 27 27 27 27 + 1 7 2 6 1 5 2 4 3 �� %R32 + � %R32 + � %R32 + � %R32 + %R32 27 9 3 9 + 4 2 � %R32 - %R32 - 2 3 , 1 15 1 14 1 13 2 12 - �� %R32 - �� %R32 - �� %R32 + �� %R32 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R32 + �� %R32 - �� %R32 - �� %R32 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R32 - � %R32 - � %R32 - � %R32 - %R32 54 9 6 9 + 2 2 1 3 - � %R32 + � %R32 + � 3 2 2 , 1 15 1 14 1 13 2 12 - �� %R32 - �� %R32 - �� %R32 + �� %R32 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R32 + �� %R32 - �� %R32 - �� %R32 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R32 - � %R32 - � %R32 - � %R32 - %R32 54 9 6 9 + 2 2 1 3 - � %R32 + � %R32 + � 3 2 2 ] , [%R33, 1 15 2 14 1 13 4 12 �� %R33 + �� %R33 + �� %R33 - �� %R33 27 27 27 27 + 11 11 4 10 1 9 14 8 - �� %R33 - �� %R33 + �� %R33 + �� %R33 27 27 27 27 + 1 7 2 6 1 5 2 4 3 �� %R33 + � %R33 + � %R33 + � %R33 + %R33 27 9 3 9 + 4 2 � %R33 - %R33 - 2 3 , 1 15 1 14 1 13 2 12 - �� %R33 - �� %R33 - �� %R33 + �� %R33 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R33 + �� %R33 - �� %R33 - �� %R33 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R33 - � %R33 - � %R33 - � %R33 - %R33 54 9 6 9 + 2 2 1 3 - � %R33 + � %R33 + � 3 2 2 , 1 15 1 14 1 13 2 12 - �� %R33 - �� %R33 - �� %R33 + �� %R33 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R33 + �� %R33 - �� %R33 - �� %R33 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R33 - � %R33 - � %R33 - � %R33 - %R33 54 9 6 9 + 2 2 1 3 - � %R33 + � %R33 + � 3 2 2 ] , [%R34, 1 15 2 14 1 13 4 12 �� %R34 + �� %R34 + �� %R34 - �� %R34 27 27 27 27 + 11 11 4 10 1 9 14 8 - �� %R34 - �� %R34 + �� %R34 + �� %R34 27 27 27 27 + 1 7 2 6 1 5 2 4 3 �� %R34 + � %R34 + � %R34 + � %R34 + %R34 27 9 3 9 + 4 2 � %R34 - %R34 - 2 3 , 1 15 1 14 1 13 2 12 - �� %R34 - �� %R34 - �� %R34 + �� %R34 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R34 + �� %R34 - �� %R34 - �� %R34 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R34 - � %R34 - � %R34 - � %R34 - %R34 54 9 6 9 + 2 2 1 3 - � %R34 + � %R34 + � 3 2 2 , 1 15 1 14 1 13 2 12 - �� %R34 - �� %R34 - �� %R34 + �� %R34 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R34 + �� %R34 - �� %R34 - �� %R34 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R34 - � %R34 - � %R34 - � %R34 - %R34 54 9 6 9 + 2 2 1 3 - � %R34 + � %R34 + � 3 2 2 ] , [- 1,1,0,1], [- 1,1,1,0], [%R23, 1 15 1 14 1 13 2 12 - �� %R23 - �� %R23 - �� %R23 + �� %R23 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R23 + �� %R23 - �� %R23 - �� %R23 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R23 - � %R23 - � %R23 - � %R23 - %R23 54 9 6 9 + 2 2 1 3 - � %R23 + � %R23 + � 3 2 2 , %R30, 1 15 1 14 1 13 - %R30 + �� %R23 + �� %R23 + �� %R23 54 27 54 + 2 12 11 11 2 10 1 9 - �� %R23 - �� %R23 - �� %R23 + �� %R23 27 54 27 54 + 7 8 1 7 1 6 1 5 1 4 �� %R23 + �� %R23 + � %R23 + � %R23 + � %R23 27 54 9 6 9 + 2 2 1 1 � %R23 - � %R23 - � 3 2 2 ] , [%R23, 1 15 1 14 1 13 2 12 - �� %R23 - �� %R23 - �� %R23 + �� %R23 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R23 + �� %R23 - �� %R23 - �� %R23 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R23 - � %R23 - � %R23 - � %R23 - %R23 54 9 6 9 + 2 2 1 3 - � %R23 + � %R23 + � 3 2 2 , %R31, 1 15 1 14 1 13 - %R31 + �� %R23 + �� %R23 + �� %R23 54 27 54 + 2 12 11 11 2 10 1 9 - �� %R23 - �� %R23 - �� %R23 + �� %R23 27 54 27 54 + 7 8 1 7 1 6 1 5 1 4 �� %R23 + �� %R23 + � %R23 + � %R23 + � %R23 27 54 9 6 9 + 2 2 1 1 � %R23 - � %R23 - � 3 2 2 ] , [%R24, 1 15 1 14 1 13 2 12 - �� %R24 - �� %R24 - �� %R24 + �� %R24 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R24 + �� %R24 - �� %R24 - �� %R24 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R24 - � %R24 - � %R24 - � %R24 - %R24 54 9 6 9 + 2 2 1 3 - � %R24 + � %R24 + � 3 2 2 , %R28, 1 15 1 14 1 13 - %R28 + �� %R24 + �� %R24 + �� %R24 54 27 54 + 2 12 11 11 2 10 1 9 - �� %R24 - �� %R24 - �� %R24 + �� %R24 27 54 27 54 + 7 8 1 7 1 6 1 5 1 4 �� %R24 + �� %R24 + � %R24 + � %R24 + � %R24 27 54 9 6 9 + 2 2 1 1 � %R24 - � %R24 - � 3 2 2 ] , [%R24, 1 15 1 14 1 13 2 12 - �� %R24 - �� %R24 - �� %R24 + �� %R24 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R24 + �� %R24 - �� %R24 - �� %R24 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R24 - � %R24 - � %R24 - � %R24 - %R24 54 9 6 9 + 2 2 1 3 - � %R24 + � %R24 + � 3 2 2 , %R29, 1 15 1 14 1 13 - %R29 + �� %R24 + �� %R24 + �� %R24 54 27 54 + 2 12 11 11 2 10 1 9 - �� %R24 - �� %R24 - �� %R24 + �� %R24 27 54 27 54 + 7 8 1 7 1 6 1 5 1 4 �� %R24 + �� %R24 + � %R24 + � %R24 + � %R24 27 54 9 6 9 + 2 2 1 1 � %R24 - � %R24 - � 3 2 2 ] , [%R25, 1 15 1 14 1 13 2 12 - �� %R25 - �� %R25 - �� %R25 + �� %R25 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R25 + �� %R25 - �� %R25 - �� %R25 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R25 - � %R25 - � %R25 - � %R25 - %R25 54 9 6 9 + 2 2 1 3 - � %R25 + � %R25 + � 3 2 2 , %R26, 1 15 1 14 1 13 - %R26 + �� %R25 + �� %R25 + �� %R25 54 27 54 + 2 12 11 11 2 10 1 9 - �� %R25 - �� %R25 - �� %R25 + �� %R25 27 54 27 54 + 7 8 1 7 1 6 1 5 1 4 �� %R25 + �� %R25 + � %R25 + � %R25 + � %R25 27 54 9 6 9 + 2 2 1 1 � %R25 - � %R25 - � 3 2 2 ] , [%R25, 1 15 1 14 1 13 2 12 - �� %R25 - �� %R25 - �� %R25 + �� %R25 54 27 54 27 + 11 11 2 10 1 9 7 8 �� %R25 + �� %R25 - �� %R25 - �� %R25 54 27 54 27 + 1 7 1 6 1 5 1 4 3 - �� %R25 - � %R25 - � %R25 - � %R25 - %R25 54 9 6 9 + 2 2 1 3 - � %R25 + � %R25 + � 3 2 2 , %R27, 1 15 1 14 1 13 - %R27 + �� %R25 + �� %R25 + �� %R25 54 27 54 + 2 12 11 11 2 10 1 9 - �� %R25 - �� %R25 - �� %R25 + �� %R25 27 54 27 54 + 7 8 1 7 1 6 1 5 1 4 �� %R25 + �� %R25 + � %R25 + � %R25 + � %R25 27 54 9 6 9 + 2 2 1 1 � %R25 - � %R25 - � 3 2 2 ] , [1,%R21,- %R21,0], [1,%R22,- %R22,0], [1,%R19,0,- %R19], [1,%R20,0,- %R20], 1 3 1 1 3 1 1 3 1 [%R17,- � %R17 + �,- � %R17 + �,- � %R17 + �], 3 3 3 3 3 3 1 3 1 1 3 1 1 3 1 [%R18,- � %R18 + �,- � %R18 + �,- � %R18 + �]] 3 3 3 3 3 3 Type: List List RealClosure Fraction Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty25} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty25}{ZeroDimensionalSolvePackageXmpPagePatch25} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty25}{\showpaste} \tab{5}\spadcommand{lr2 := realSolve(lf)$pack\free{lf }\free{pack }\bound{lr2 }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch26} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull26}{ZeroDimensionalSolvePackageXmpPageEmpty26} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull26}{\hidepaste} \tab{5}\spadcommand{\#lr2\free{lr2 }} \indentrel{3}\begin{verbatim} (26) 27 Type: PositiveInteger \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty26} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty26}{ZeroDimensionalSolvePackageXmpPagePatch26} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty26}{\showpaste} \tab{5}\spadcommand{\#lr2\free{lr2 }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch27} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull27}{ZeroDimensionalSolvePackageXmpPageEmpty27} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull27}{\hidepaste} \tab{5}\spadcommand{lpr2 := positiveSolve(lf)$pack\free{lf }\free{pack }\bound{lpr2 }} \indentrel{3}\begin{verbatim} (27) 1 3 1 1 3 1 1 3 1 [[%R40,- � %R40 + �,- � %R40 + �,- � %R40 + �]] 3 3 3 3 3 3 Type: List List RealClosure Fraction Integer \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty27} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty27}{ZeroDimensionalSolvePackageXmpPagePatch27} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty27}{\showpaste} \tab{5}\spadcommand{lpr2 := positiveSolve(lf)$pack\free{lf }\free{pack }\bound{lpr2 }} \end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch28} \begin{paste}{ZeroDimensionalSolvePackageXmpPageFull28}{ZeroDimensionalSolvePackageXmpPageEmpty28} \pastebutton{ZeroDimensionalSolvePackageXmpPageFull28}{\hidepaste} \tab{5}\spadcommand{[approximate(r,1/10**21)::Float for r in lpr2.1]\free{lpr2 }} \indentrel{3}\begin{verbatim} (28) [0.3221853546 2608559291, 0.3221853546 2608559291, 0.3221853546 2608559291, 0.3221853546 2608559291] Type: List Float \end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty28} \begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty28}{ZeroDimensionalSolvePackageXmpPagePatch28} \pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty28}{\showpaste} \tab{5}\spadcommand{[approximate(r,1/10**21)::Float for r in lpr2.1]\free{lpr2 }} \end{paste}\end{patch}