% Copyright The Numerical Algorithms Group Limited 1992-94. All rights reserved. % !! DO NOT MODIFY THIS FILE BY HAND !! Created by ht.awk. \newcommand{\LinearOrdinaryDifferentialOperatorXmpTitle}{LinearOrdinaryDifferentialOperator} \newcommand{\LinearOrdinaryDifferentialOperatorXmpNumber}{9.44} % % ===================================================================== \begin{page}{LinearOrdinaryDifferentialOperatorXmpPage}{9.44 LinearOrdinaryDifferentialOperator} % ===================================================================== \beginscroll \spadtype{LinearOrdinaryDifferentialOperator(A, diff)} is the domain of linear %-% \HDindex{operator!linear ordinary differential}{LinearOrdinaryDifferentialOperatorXmpPage}{9.44}{LinearOrdinaryDifferentialOperator} ordinary differential operators with coefficients in a ring \spad{A} with a given derivation. %This includes the cases of operators which are polynomials in \spad{D} %acting upon scalar or vector expressions of a single variable. %The coefficients of the operator polynomials can be integers, rational %functions, matrices or elements of other domains. \showBlurb{LinearOrdinaryDifferentialOperator} \beginmenu \menudownlink{{9.44.1. Differential Operators with Series Coefficients}}{ugxLinearOrdinaryDifferentialOperatorSeriesPage} \endmenu \endscroll \autobuttons \end{page} % % \newcommand{\ugxLinearOrdinaryDifferentialOperatorSeriesTitle}{Differential Operators with Series Coefficients} \newcommand{\ugxLinearOrdinaryDifferentialOperatorSeriesNumber}{9.44.1.} % % ===================================================================== \begin{page}{ugxLinearOrdinaryDifferentialOperatorSeriesPage}{9.44.1. Differential Operators with Series Coefficients} % ===================================================================== \beginscroll \noindent {\bf Problem:} Find the first few coefficients of \spad{exp(x)/x**i} of \spad{Dop phi} where \begin{verbatim} Dop := D**3 + G/x**2 * D + H/x**3 - 1 phi := sum(s[i]*exp(x)/x**i, i = 0..) \end{verbatim} \noindent {\bf Solution:} \xtc{ Define the differential. }{ \spadpaste{Dx: LODO(EXPR INT, f +-> D(f, x)) \bound{Dxd}} } \xtc{ }{ \spadpaste{Dx := D() \free{Dxd}\bound{Dx}} } \xtc{ Now define the differential operator \spad{Dop}. }{ \spadpaste{Dop:= Dx**3 + G/x**2*Dx + H/x**3 - 1 \free{Dx}\bound{Dop}} } \xtc{ }{ \spadpaste{n == 3 \bound{n3}} } \xtc{ }{ \spadpaste{phi == reduce(+,[subscript(s,[i])*exp(x)/x**i for i in 0..n]) \bound{phi}} } \xtc{ }{ \spadpaste{phi1 == Dop(phi) / exp x \bound{phi1}\free{Dop phi}} } \xtc{ }{ \spadpaste{phi2 == phi1 *x**(n+3) \bound{phi2}\free{phi1}} } \xtc{ }{ \spadpaste{phi3 == retract(phi2)@(POLY INT) \bound{phi3}\free{phi2}} } \xtc{ }{ \spadpaste{pans == phi3 ::UP(x,POLY INT) \free{phi3}\bound{pans}} } \xtc{ }{ \spadpaste{pans1 == [coefficient(pans, (n+3-i) :: NNI) for i in 2..n+1] \bound{pans1}\free{pans}} } \xtc{ }{ \spadpaste{leq == solve(pans1,[subscript(s,[i]) for i in 1..n]) \bound{leq}\free{pans1}} } \xtc{ Evaluate this for several values of \spad{n}. }{ \spadpaste{leq \free{n3 leq}} } \xtc{ }{ \spadpaste{n==4 \bound{n4}} } \xtc{ }{ \spadpaste{leq \free{n4 leq}} } \xtc{ }{ \spadpaste{n==7 \bound{n7}} } \xtc{ }{ \spadpaste{leq \free{n7 leq}} } \endscroll \autobuttons \end{page} %