/* Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd. All rights reserved. Copyright (C) 2007-2008, Gabriel Dos Reis. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of The Numerical Algorithms Group Ltd. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define _SURFACE3D_C #include "openaxiom-c-macros.h" #include <string.h> #include <math.h> #include <stdlib.h> #include "header.h" #include "draw.h" #include "mode.h" /* for #define components */ #include "sockio.h" #include "com.h" #include "XSpadFill.H1" #include "XShade.H1" #include "util.H1" #include "Gfun.H1" #include "all_3d.H1" /**** useful defines ****/ #define precisionFactor 1024 /* depthChecker turns on the extensive depth checking mechanisms for the depth sort algorithm. Without it, the hidden surface removal is just a sort by z which works remarkably well, but, is insufficient and, at times, may end up being incorrect */ #define depthChecker pointInfo ptIA, ptIB, ptIC; /* global to this file */ /************************************ * void drawLineComponent(p,dFlag) * ************************************/ void drawLineComponent (poly * p, int dFlag) { int i, hue; int *anIndex; RGB col_rgb; /* If the polygon is clipped against the hither plane (clipPz) then it is not drawn...or...if the clipStuff is set to true, and the polygon is clipped against the user defined clip volume, it is also not drawn. */ if (!((p->partialClipPz) || (viewData.clipStuff && (p->partialClip)))) { /* This routine will eventually only be skipped if p->totalClip is true and another routine would handle the partialClip. this routine would handle only those polygons without any clipped points */ for (i=0, anIndex=p->indexPtr; i<p->numpts; i++,anIndex++) { quadMesh[i].x = refPt3D(viewData,*anIndex)->px; quadMesh[i].y = refPt3D(viewData,*anIndex)->py; } if (dFlag==Xoption) { if (mono || viewport->monoOn) GSetForeground(opaqueGC, (float)foregroundColor, dFlag); else { hue = hueValue(p->color); GSetForeground(opaqueGC, (float)XSolidColor(hue,2), dFlag); } } else GSetForeground(opaqueGC, psBlack, dFlag); if (dFlag==PSoption && !mono && !viewport->monoOn) { hue = getHue(p->color); col_rgb = hlsTOrgb((float)hue,0.5,0.8); PSDrawColor(col_rgb.r,col_rgb.g,col_rgb.b,quadMesh,p->numpts); } else { GDrawLines(opaqueGC, viewport->viewWindow, quadMesh, p->numpts, CoordModeOrigin, dFlag); } if (dFlag == Xoption) XMapWindow(dsply, viewport->viewWindow); } } /************************************************** * void drawOpaquePolygon(p,aGC,anotherGC) * **************************************************/ void drawOpaquePolygon (poly *p,GC aGC,GC anotherGC,int dFlag) { int *anIndex, i, hue, isNaN = 0; RGB col_rgb; if (mono || viewport->monoOn) { GSetForeground(anotherGC, (float)foregroundColor, dFlag); } else { hue = hueValue(p->color); GSetForeground(anotherGC, (float)XSolidColor(hue,2), dFlag); } /* If the polygon is clipped against the hither plane (clipPz) then it is not drawn, or if the clipStuff is set to true, and the polygon is clipped against the user defined clip volume, it is also not drawn. */ if (!((p->partialClipPz) || (viewData.clipStuff && (p->partialClip)))) { /* This routine should eventually only be skipped if p->totalClip is true and another routine would handle the partialClip. This routine would handle only those polygons without any clipped points. */ for (i=0, anIndex=p->indexPtr; i<p->numpts; i++,anIndex++) { quadMesh[i].x = refPt3D(viewData,*anIndex)->px; quadMesh[i].y = refPt3D(viewData,*anIndex)->py; if (eqNANQ(quadMesh[i].x) || eqNANQ(quadMesh[i].y)) isNaN = 1; } quadMesh[i].x =refPt3D(viewData,*(p->indexPtr))->px; quadMesh[i].y =refPt3D(viewData,*(p->indexPtr))->py; if (eqNANQ(quadMesh[i].x) || eqNANQ(quadMesh[i].y)) isNaN = 1; if (dFlag==PSoption && !mono && !viewport->monoOn && !isNaN) { GSetForeground(GC9991, (float)backgroundColor, PSoption); PSFillPolygon(GC9991, quadMesh, p->numpts+1); hue = getHue(p->color); col_rgb = hlsTOrgb((float)hue,0.5,0.8); if (viewport->diagonals) PSDrawColor(col_rgb.r,col_rgb.g,col_rgb.b,quadMesh,p->numpts+1); else PSDrawColor(col_rgb.r,col_rgb.g,col_rgb.b,quadMesh,p->numpts); } else { if (mono || viewport->monoOn) { GSetForeground(anotherGC, (float)foregroundColor, dFlag); } else { hue = hueValue(p->color); GSetForeground(anotherGC, (float)XSolidColor(hue,2), dFlag); } GSetForeground(aGC,(float)backgroundColor,dFlag); if (!isNaN) { XFillPolygon(dsply, viewport->viewWindow, aGC, quadMesh, p->numpts, Convex,CoordModeOrigin); if (viewport->diagonals) GDrawLines(anotherGC,viewport->viewWindow,quadMesh,p->numpts+1, CoordModeOrigin, dFlag); else GDrawLines(anotherGC,viewport->viewWindow,quadMesh,p->numpts, CoordModeOrigin, dFlag); } } if (dFlag == Xoption) XMapWindow(dsply,viewport->viewWindow); } /* if not totally clipped */ } /************************************* * poly *copyPolygons(polygonList) * * * * copies the given list of polygons * * into a newly allocated list * *************************************/ poly * copyPolygons (poly *polygonList) { int i; poly *aPoly,*retval,*prev; prev = retval = aPoly = (poly *)saymem("surface.c",1,sizeof(poly)); aPoly->indexPtr = (int *)saymem("surface.c", polygonList->numpts,sizeof(int)); aPoly->num = polygonList->num; aPoly->sortNum = polygonList->sortNum; aPoly->split = polygonList->split; aPoly->numpts = polygonList->numpts; for (i=0; i<aPoly->numpts; i++) *((aPoly->indexPtr) + i) = *((polygonList->indexPtr) + i); aPoly->N[0] = polygonList->N[0]; aPoly->N[1] = polygonList->N[1]; aPoly->N[2] = polygonList->N[2]; aPoly->planeConst = polygonList->planeConst; aPoly->color = polygonList->color; aPoly->moved = no; aPoly->pxmin = polygonList->pxmin; aPoly->pxmax = polygonList->pxmax; aPoly->pymin = polygonList->pymin; aPoly->pymax = polygonList->pymax; aPoly->pzmin = polygonList->pzmin; aPoly->pzmax = polygonList->pzmax; aPoly->xmin = polygonList->xmin; aPoly->xmax = polygonList->xmax; aPoly->ymin = polygonList->ymin; aPoly->ymax = polygonList->ymax; aPoly->zmin = polygonList->zmin; aPoly->zmax = polygonList->zmax; aPoly->normalFacingOut = polygonList->normalFacingOut; aPoly->primitiveType = polygonList->primitiveType; for (polygonList = polygonList->next; polygonList != NIL(poly); polygonList = polygonList->next) { prev->next = aPoly = (poly *)saymem("surface.c",1,sizeof(poly)); aPoly->indexPtr = (int *)saymem("surface.c", polygonList->numpts,sizeof(int)); aPoly->num = polygonList->num; aPoly->sortNum = polygonList->sortNum; aPoly->numpts = polygonList->numpts; aPoly->split = polygonList->split; for (i=0; i<aPoly->numpts; i++) *((aPoly->indexPtr) + i) = *((polygonList->indexPtr) + i); aPoly->N[0] = polygonList->N[0]; aPoly->N[1] = polygonList->N[1]; aPoly->N[2] = polygonList->N[2]; aPoly->planeConst = polygonList->planeConst; aPoly->color = polygonList->color; aPoly->moved = no; aPoly->pxmin = polygonList->pxmin; aPoly->pxmax = polygonList->pxmax; aPoly->pymin = polygonList->pymin; aPoly->pymax = polygonList->pymax; aPoly->pzmin = polygonList->pzmin; aPoly->pzmax = polygonList->pzmax; aPoly->xmin = polygonList->xmin; aPoly->xmax = polygonList->xmax; aPoly->ymin = polygonList->ymin; aPoly->ymax = polygonList->ymax; aPoly->zmin = polygonList->zmin; aPoly->zmax = polygonList->zmax; aPoly->normalFacingOut = polygonList->normalFacingOut; aPoly->primitiveType = polygonList->primitiveType; prev = aPoly; } aPoly->next = 0; return(retval); } /****************************** * void minMaxPolygons(aPoly) * * * * sets up the xmin, * * etc, for each polygon * * for sorting and * * extent checking. * ******************************/ void minMaxPolygons (poly *aPoly) { int *anIndex; int i; for (; aPoly != NIL(poly); aPoly = aPoly->next) { anIndex = aPoly->indexPtr; aPoly->pxmin = aPoly->pxmax = refPt3D(viewData,*anIndex)->px; aPoly->pymin = aPoly->pymax = refPt3D(viewData,*anIndex)->py; aPoly->pzmin = aPoly->pzmax = refPt3D(viewData,*anIndex)->pz; aPoly->xmin = aPoly->xmax = refPt3D(viewData,*anIndex)->x; aPoly->ymin = aPoly->ymax = refPt3D(viewData,*anIndex)->y; aPoly->zmin = aPoly->zmax = refPt3D(viewData,*anIndex)->z; for (i=1,anIndex++; i<aPoly->numpts; i++,anIndex++) { if (refPt3D(viewData,*anIndex)->px < aPoly->pxmin) aPoly->pxmin = refPt3D(viewData,*anIndex)->px; else if (refPt3D(viewData,*anIndex)->px > aPoly->pxmax) aPoly->pxmax = refPt3D(viewData,*anIndex)->px; if (refPt3D(viewData,*anIndex)->py < aPoly->pymin) aPoly->pymin = refPt3D(viewData,*anIndex)->py; else if (refPt3D(viewData,*anIndex)->py > aPoly->pymax) aPoly->pymax = refPt3D(viewData,*anIndex)->py; if (refPt3D(viewData,*anIndex)->pz < aPoly->pzmin) aPoly->pzmin = refPt3D(viewData,*anIndex)->pz; else if (refPt3D(viewData,*anIndex)->pz > aPoly->pzmax) aPoly->pzmax = refPt3D(viewData,*anIndex)->pz; if (refPt3D(viewData,*anIndex)->x < aPoly->xmin) aPoly->xmin = refPt3D(viewData,*anIndex)->x; else if (refPt3D(viewData,*anIndex)->x > aPoly->xmax) aPoly->xmax = refPt3D(viewData,*anIndex)->x; if (refPt3D(viewData,*anIndex)->y < aPoly->ymin) aPoly->ymin = refPt3D(viewData,*anIndex)->y; else if (refPt3D(viewData,*anIndex)->y > aPoly->ymax) aPoly->ymax = refPt3D(viewData,*anIndex)->y; if (refPt3D(viewData,*anIndex)->z < aPoly->zmin) aPoly->zmin = refPt3D(viewData,*anIndex)->z; else if (refPt3D(viewData,*anIndex)->z > aPoly->zmax) aPoly->zmax = refPt3D(viewData,*anIndex)->z; } } } /* minMaxPolygons */ /*********************************** * int polyCompare (p1,p2) * * * * returns -1 if p1 < p2 * * 0 if p1 = p2 * * 1 if p1 > p2 * * note that this is the reverse * * of what the msort requested. * * this is so that the list will * * be sorted from max to min. * ***********************************/ int polyCompare (poly *p1,poly *p2) { if (p1->pzmax > p2->pzmax) return(-1); else if (p1->pzmax < p2->pzmax) return(1); else return(0); } /*********************** * void calcEyePoint() * * * * sets the global * * variable eyePoint[] * * to where the viewer * * is pointed towards * ***********************/ void calcEyePoint (void) { eyePoint[0] = sinPhi * (sinTheta); eyePoint[1] = sinPhi * (-cosTheta); eyePoint[2] = cosPhi; } /* void drawPolygons() A general routine for displaying a list of polygons with the proper hidden surfaces removed. Assumes the list of polygons is in viewData.polygons. Needs a routine to split intersecting polygons in object space. * */ /************************************** * void drawRenderedPolygon(p,dFlag) * * * * calculate the color for the * * polygon p and draw it * **************************************/ void drawRenderedPolygon (poly *p,int dFlag) { int i,hue,shade, isNaN = 0; float whichSide,H[3],P[3],LN,HN,diff,spec,tempLight,lumens,E[3],N[3]; int *anIndex, *indx; RGB col_rgb; if (!((p->partialClipPz) || (viewData.clipStuff && (p->partialClip)))) { /* This routine should eventually only be skipped if p->totalClip is true and another routine would handle the partialClip. This routine would handle only those polygons without any clipped points. */ for (i=0, anIndex=p->indexPtr; i<p->numpts; i++,anIndex++) { quadMesh[i].x = refPt3D(viewData,*anIndex)->px; quadMesh[i].y = refPt3D(viewData,*anIndex)->py; if (eqNANQ(quadMesh[i].x) || eqNANQ(quadMesh[i].y)) isNaN = 1; } quadMesh[i].x = refPt3D(viewData,*(p->indexPtr))->px; quadMesh[i].y = refPt3D(viewData,*(p->indexPtr))->py; if (eqNANQ(quadMesh[i].x) || eqNANQ(quadMesh[i].y)) isNaN = 1; if (!isNaN) { /* calculate polygon illumination */ indx = p->indexPtr; P[0] = (refPt3D(viewData,*(indx))->wx + refPt3D(viewData,*(indx+1))->wx + refPt3D(viewData,*(indx+2))->wx); P[1] = (refPt3D(viewData,*(indx))->wy + refPt3D(viewData,*(indx+1))->wy + refPt3D(viewData,*(indx+2))->wy); P[2] = (refPt3D(viewData,*(indx))->wz + refPt3D(viewData,*(indx+1))->wz + refPt3D(viewData,*(indx+2))->wz); normalizeVector(P); N[0] = p->N[0]; N[1] = p->N[1]; N[2] = p->N[2]; normalizeVector(eyePoint); E[0] = 4.0*eyePoint[0] - P[0]; E[1] = 4.0*eyePoint[1] - P[1]; E[2] = 4.0*eyePoint[2] - P[2]; normalizeVector(E); diff = 0.0; spec = 0.0; LN = N[0]*viewport->lightVector[0] + N[1]*viewport->lightVector[1] + N[2]*viewport->lightVector[2]; if (LN < 0.0) LN = -LN; diff = LN*Cdiff; if (LN > 0.0) { H[0] = E[0] + viewport->lightVector[0]; H[1] = E[1] + viewport->lightVector[1]; H[2] = E[2] + viewport->lightVector[2]; normalizeVector(H); HN = dotProduct(N,H,3); if (HN < 0.0) HN = -HN; spec = pow((double)absolute(HN),coeff); if (spec > 1.0) spec = 1.0; } lumens = ((Camb + 0.15) + diff + spec*Cspec); if (lumens > 1.0) lumens = 1.0; if (lumens < 0.0) lumens = 0.0; if (dFlag==PSoption && !mono && !viewport->monoOn) { hue = getHue(p->color); col_rgb = hlsTOrgb((float)hue,lumens,0.8); /* NTSC color to grey = .299 red + .587 green + .114 blue */ maxGreyShade = (int) psShadeMax; whichSide = (.299*col_rgb.r + .587*col_rgb.g + .114*col_rgb.b) * (maxGreyShade-1); } else { if (mono || viewport->monoOn) { hue = getHue(p->color); col_rgb = hlsTOrgb((float)hue,lumens,0.8); whichSide = (.299*col_rgb.r + .587*col_rgb.g + .114*col_rgb.b) * (maxGreyShade-1); } else whichSide = lumens*(totalShades-1); } tempLight = lightIntensity; if (lightIntensity < Camb) lightIntensity = Camb; shade = floor(lightIntensity * absolute(whichSide)); lightIntensity = tempLight; if (shade < totalShades) { /* shade < totalShades is (temporarily) necessary here because, currently, parameterizations for things like the sphere would produce triangular shaped polygons close to the poles which get triangularized leaving a triangle with coincidental points. the normal for this would be undefined (since coincidental points would create a zero vector) and the shade would be large, hence, the conditional. */ if (mono || viewport->monoOn) { if (dFlag == Xoption) { XChangeShade(dsply,maxGreyShade-shade-1); XShadePolygon(dsply,viewport->viewWindow,quadMesh,p->numpts+1, Convex,CoordModeOrigin); } else if (dFlag == PSoption) { /* renderGC has number 9991 (see main.c, header.h) */ GSetForeground(GC9991, 1.0-(float)(maxGreyShade-shade-1)*psShadeMul,PSoption); PSFillPolygon(GC9991, quadMesh, p->numpts+1); } } else { /* not mono */ if (dFlag == Xoption) { hue = hueValue(p->color); XSpadFillPolygon(dsply, viewport->viewWindow, quadMesh, p->numpts+1, Convex,CoordModeOrigin, hue, shade); } else if (dFlag == PSoption) /* draws it out in monochrome */ PSColorPolygon(col_rgb.r,col_rgb.g,col_rgb.b,quadMesh,p->numpts+1); } /* if mono-else */ if (viewData.outlineRenderOn) { if (viewport->diagonals) { if (dFlag == PSoption) { GSetForeground(renderGC,psBlack, dFlag); GDrawLines(renderGC,viewport->viewWindow,quadMesh,p->numpts+1, CoordModeOrigin,dFlag); } else GDrawLines(renderGC,viewport->viewWindow,quadMesh,p->numpts+1, CoordModeOrigin,dFlag); } else { if (dFlag == PSoption) { GSetForeground(renderGC,psBlack,PSoption); GDrawLines(renderGC,viewport->viewWindow,quadMesh,p->numpts, CoordModeOrigin,PSoption); } else GDrawLines(renderGC,viewport->viewWindow,quadMesh,p->numpts, CoordModeOrigin,dFlag); } } } } /* if not NaN */ if (dFlag == Xoption) XMapWindow(dsply,viewport->viewWindow); } /* if not clipped */ } /* drawRenderedPolygon */ void freePointResevoir(void) { viewTriple *v; while (splitPoints != NIL(viewTriple)) { v = splitPoints; splitPoints = splitPoints->next; free(v); } } /* freePointResevoir */ /*********************************** * void freeListOfPolygons(pList); * * * * frees up a list of polygons. * ***********************************/ void freeListOfPolygons (poly *pList) { poly *nextP; for (; pList != NIL(poly); pList=nextP) { nextP=pList->next; free(pList->indexPtr); free(pList); } } /* freeListOfPolygons() */ void drawPolygons(int dFlag) { poly *p,*head; poly *tempQuick=NULL; int quickFirst=yes; if (recalc) { /* To get around multiple X Expose events the server tends to send upon startup, leave negation of firstTime to the end. */ rotated = no; zoomed = no; translated = no; switchedPerspective = no; changedEyeDistance = no; redoSmooth = yes; if (keepDrawingViewport()) { if (!firstTime) { strcpy(control->message," Creating Polygons "); writeControlMessage(); freeListOfPolygons(quickList); freePointResevoir(); } strcpy(control->message," Collecting Polygons "); writeControlMessage(); quickList = copyPolygons(viewData.polygons); if (keepDrawingViewport()) { /* to get normal facing outside info */ strcpy(control->message," Projecting Polygons "); writeControlMessage(); projectAllPolys(quickList); if (keepDrawingViewport()) { strcpy(control->message," Setting Extreme Values "); writeControlMessage(); minMaxPolygons(quickList); if (keepDrawingViewport()) { strcpy(control->message," Sorting Polygons "); writeControlMessage(); quickList = msort(quickList,0,viewData.numPolygons,polyCompare); if (keepDrawingViewport()) { calcEyePoint(); head = p = quickList; clearControlMessage(); strcpy(control->message,viewport->title); writeControlMessage(); if (viewData.scaleDown) { if (keepDrawingViewport()) { for (p=quickList; keepDrawingViewport() && (p != NIL(poly)); p=p->next) { switch (p->primitiveType) { case pointComponent: if (dFlag==Xoption) { if (mono || viewport->monoOn) GSetForeground(componentGC, (float)foregroundColor, dFlag); else GSetForeground(componentGC, (float)meshOutline, dFlag); } else { GSetForeground(componentGC, psBlack, dFlag); GFillArc(componentGC, viewport->viewWindow, (int)refPt3D(viewData,*(p->indexPtr))->px, (int)refPt3D(viewData,*(p->indexPtr))->py, viewData.pointSize,viewData.pointSize,0, 360*64, dFlag); } break; case lineComponent: drawLineComponent(p,dFlag); break; default: if (viewData.style == opaqueMesh) { GSetForeground(globGC,(float)backgroundColor,dFlag); drawOpaquePolygon(p,globGC,opaqueGC,dFlag); } else { drawRenderedPolygon(p,dFlag); } } /* switch */ } } } if (!quickFirst) { /* append the rest of the polygons onto the list */ tempQuick->next = head; /* but do not continue the drawing... */ if (head != NIL(poly)) head->doNotStopDraw = no; } /* if !quickFirst */ finishedList = (p==NIL(poly)); } /* for various */ } /* steps */ } /* of */ } /* keepDrawingViewport() */ } /* *** */ /* May want to have a flag somewhere to stop the drawing yet continue the freeing */ if (firstTime) firstTime = no; } else { /* if recalc else if not recalc just draw stuff in list */ if (keepDrawingViewport()) { for (p=quickList; keepDrawingViewport() && p != NIL(poly) && (viewData.scaleDown || p->doNotStopDraw); p=p->next) { projectAPoly(p); switch (p->primitiveType) { case pointComponent: if (dFlag==Xoption) { if (mono || viewport->monoOn) GSetForeground(componentGC,(float)foregroundColor, dFlag); else GSetForeground(componentGC,(float)meshOutline, dFlag); } else GSetForeground(componentGC,psBlack, dFlag); GFillArc(componentGC, viewport->viewWindow, (int)refPt3D(viewData,*(p->indexPtr))->px, (int)refPt3D(viewData,*(p->indexPtr))->py, viewData.pointSize,viewData.pointSize,0,360*64,dFlag); break; case lineComponent: drawLineComponent(p,dFlag); break; default: if (viewData.style == opaqueMesh) { GSetForeground(globGC,(float)backgroundColor,dFlag); drawOpaquePolygon(p,globGC,opaqueGC,dFlag); } else drawRenderedPolygon(p,dFlag); } /* switch */ } } } } /* drawPolygons */ /************************** * int lessThan(x,y) * * int greaterThan(x,y) * * int equal(x,y) * * * * Compares two floating * * point numbers for * * precision of up to one * * place in a thousand. * * returns * * 1 if true * * o otherwise * **************************/ int lessThan (float x,float y) { int xI,yI; xI = x*precisionFactor; yI = y*precisionFactor; return(xI<yI); } int greaterThan (float x,float y) { int xI,yI; xI = x*precisionFactor; yI = y*precisionFactor; return(xI>yI); } int isNaN (float v) { return (v != v); } int isNaNPoint (float x,float y,float z) { return (isNaN(x) || isNaN(y) || isNaN(z)); } int equal (float x,float y) { int xI,yI; xI = x*precisionFactor; yI = y*precisionFactor; return(xI==yI); }