\documentclass{article} \usepackage{open-axiom} \begin{document} \title{src/algebra zerodim.spad} \author{Marc Moreno Maza} \maketitle \begin{abstract} \end{abstract} \tableofcontents \eject \section{package FGLMICPK FGLMIfCanPackage} <<package FGLMICPK FGLMIfCanPackage>>= import GcdDomain import Symbol import List )abbrev package FGLMICPK FGLMIfCanPackage ++ Author: Marc Moreno Maza ++ Date Created: 08/02/1999 ++ Date Last Updated: 08/02/1999 ++ Description: ++ This is just an interface between several packages and domains. ++ The goal is to compute lexicographical Groebner bases ++ of sets of polynomial with type \spadtype{Polynomial R} ++ by the {\em FGLM} algorithm if this is possible (i.e. ++ if the input system generates a zero-dimensional ideal). ++ Version: 1. FGLMIfCanPackage(R,ls): Exports == Implementation where R: GcdDomain ls: List Symbol V ==> OrderedVariableList ls N ==> NonNegativeInteger Z ==> Integer B ==> Boolean Q1 ==> Polynomial R Q2 ==> HomogeneousDistributedMultivariatePolynomial(ls,R) Q3 ==> DistributedMultivariatePolynomial(ls,R) E2 ==> HomogeneousDirectProduct(#ls,NonNegativeInteger) E3 ==> DirectProduct(#ls,NonNegativeInteger) poltopol ==> PolToPol(ls, R) lingrobpack ==> LinGroebnerPackage(ls,R) groebnerpack2 ==> GroebnerPackage(R,E2,V,Q2) groebnerpack3 ==> GroebnerPackage(R,E3,V,Q3) Exports == with zeroDimensional?: List(Q1) -> B ++ \axiom{zeroDimensional?(lq1)} returns true iff ++ \axiom{lq1} generates a zero-dimensional ideal ++ w.r.t. the variables of \axiom{ls}. fglmIfCan: List(Q1) -> Union(List(Q1), "failed") ++ \axiom{fglmIfCan(lq1)} returns the lexicographical Groebner ++ basis of \axiom{lq1} by using the {\em FGLM} strategy, ++ if \axiom{zeroDimensional?(lq1)} holds. groebner: List(Q1) -> List(Q1) ++ \axiom{groebner(lq1)} returns the lexicographical Groebner ++ basis of \axiom{lq1}. If \axiom{lq1} generates a zero-dimensional ++ ideal then the {\em FGLM} strategy is used, otherwise ++ the {\em Sugar} strategy is used. Implementation == add zeroDim?(lq2: List Q2): Boolean == lq2 := groebner(lq2)$groebnerpack2 empty? lq2 => false #lq2 < #ls => false lv: List(V) := [(variable(s)$V)::V for s in ls] for q2 in lq2 while not empty?(lv) repeat m := leadingMonomial(q2) x := mainVariable(m)::V if ground?(leadingCoefficient(univariate(m,x))) then lv := remove(x, lv) empty? lv zeroDimensional?(lq1: List(Q1)): Boolean == lq2: List(Q2) := [pToHdmp(q1)$poltopol for q1 in lq1] zeroDim?(lq2) fglmIfCan(lq1:List(Q1)): Union(List(Q1),"failed") == lq2: List(Q2) := [pToHdmp(q1)$poltopol for q1 in lq1] lq2 := groebner(lq2)$groebnerpack2 not zeroDim?(lq2) => "failed"::Union(List(Q1),"failed") lq3: List(Q3) := totolex(lq2)$lingrobpack lq1 := [dmpToP(q3)$poltopol for q3 in lq3] lq1::Union(List(Q1),"failed") groebner(lq1:List(Q1)): List(Q1) == lq2: List(Q2) := [pToHdmp(q1)$poltopol for q1 in lq1] lq2 := groebner(lq2)$groebnerpack2 not zeroDim?(lq2) => lq3: List(Q3) := [pToDmp(q1)$poltopol for q1 in lq1] lq3 := groebner(lq3)$groebnerpack3 [dmpToP(q3)$poltopol for q3 in lq3] lq3: List(Q3) := totolex(lq2)$lingrobpack [dmpToP(q3)$poltopol for q3 in lq3] @ \section{domain RGCHAIN RegularChain} <<domain RGCHAIN RegularChain>>= import GcdDomain import RegularTriangularSet import Symbol import Boolean import List )abbrev domain RGCHAIN RegularChain ++ Author: Marc Moreno Maza ++ Date Created: 01/1999 ++ Date Last Updated: 23/01/1999 ++ Description: ++ A domain for regular chains (i.e. regular triangular sets) over ++ a Gcd-Domain and with a fix list of variables. ++ This is just a front-end for the \spadtype{RegularTriangularSet} ++ domain constructor. ++ Version: 1. RegularChain(R,ls): Exports == Implementation where R : GcdDomain ls: List Symbol V ==> OrderedVariableList ls E ==> IndexedExponents V P ==> NewSparseMultivariatePolynomial(R,V) TS ==> RegularTriangularSet(R,E,V,P) Exports == RegularTriangularSetCategory(R,E,V,P) with zeroSetSplit: (List P, Boolean, Boolean) -> List $ ++ \spad{zeroSetSplit(lp,clos?,info?)} returns a list \spad{lts} of regular ++ chains such that the union of the closures of their regular zero sets ++ equals the affine variety associated with \spad{lp}. Moreover, ++ if \spad{clos?} is \spad{false} then the union of the regular zero ++ set of the \spad{ts} (for \spad{ts} in \spad{lts}) equals this variety. ++ If \spad{info?} is \spad{true} then some information is ++ displayed during the computations. See ++ \axiomOpFrom{zeroSetSplit}{RegularTriangularSet}. Implementation == RegularTriangularSet(R,E,V,P) @ \section{package LEXTRIPK LexTriangularPackage} <<package LEXTRIPK LexTriangularPackage>>= import GcdDomain import Symbol import List )abbrev package LEXTRIPK LexTriangularPackage ++ Author: Marc Moreno Maza ++ Date Created: 08/02/1999 ++ Date Last Updated: 08/02/1999 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Description: ++ A package for solving polynomial systems with finitely many solutions. ++ The decompositions are given by means of regular triangular sets. ++ The computations use lexicographical Groebner bases. ++ The main operations are \axiomOpFrom{lexTriangular}{LexTriangularPackage} ++ and \axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. ++ The second one provide decompositions by means of square-free regular triangular sets. ++ Both are based on the {\em lexTriangular} method described in [1]. ++ They differ from the algorithm described in [2] by the fact that ++ multiciplities of the roots are not kept. ++ With the \axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation ++ all multiciplities are removed. With the other operation some multiciplities may remain. ++ Both operations admit an optional argument to produce normalized triangular sets. \newline ++ References: \newline ++ [1] D. LAZARD "Solving Zero-dimensional Algebraic Systems" ++ published in the J. of Symbol. Comput. (1992) 13, 117-131.\newline ++ [2] M. MORENO MAZA and R. RIOBOO "Computations of gcd over ++ algebraic towers of simple extensions" In proceedings of AAECC11, Paris, 1995.\newline ++ Version: 2. LexTriangularPackage(R,ls): Exports == Implementation where R: GcdDomain ls: List Symbol V ==> OrderedVariableList ls E ==> IndexedExponents V P ==> NewSparseMultivariatePolynomial(R,V) TS ==> RegularChain(R,ls) ST ==> SquareFreeRegularTriangularSet(R,E,V,P) Q1 ==> Polynomial R PS ==> GeneralPolynomialSet(R,E,V,P) N ==> NonNegativeInteger Z ==> Integer B ==> Boolean S ==> String K ==> Fraction R LP ==> List P BWTS ==> Record(val : Boolean, tower : TS) LpWTS ==> Record(val : (List P), tower : TS) BWST ==> Record(val : Boolean, tower : ST) LpWST ==> Record(val : (List P), tower : ST) polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P) quasicomppackTS ==> QuasiComponentPackage(R,E,V,P,TS) regsetgcdpackTS ==> SquareFreeRegularTriangularSetGcdPackage(R,E,V,P,TS) normalizpackTS ==> NormalizationPackage(R,E,V,P,TS) quasicomppackST ==> QuasiComponentPackage(R,E,V,P,ST) regsetgcdpackST ==> SquareFreeRegularTriangularSetGcdPackage(R,E,V,P,ST) normalizpackST ==> NormalizationPackage(R,E,V,P,ST) Exports == with zeroDimensional?: LP -> B ++ \axiom{zeroDimensional?(lp)} returns true iff ++ \axiom{lp} generates a zero-dimensional ideal ++ w.r.t. the variables involved in \axiom{lp}. fglmIfCan: LP -> Union(LP, "failed") ++ \axiom{fglmIfCan(lp)} returns the lexicographical Groebner ++ basis of \axiom{lp} by using the {\em FGLM} strategy, ++ if \axiom{zeroDimensional?(lp)} holds . groebner: LP -> LP ++ \axiom{groebner(lp)} returns the lexicographical Groebner ++ basis of \axiom{lp}. If \axiom{lp} generates a zero-dimensional ++ ideal then the {\em FGLM} strategy is used, otherwise ++ the {\em Sugar} strategy is used. lexTriangular: (LP, B) -> List TS ++ \axiom{lexTriangular(base, norm?)} decomposes the variety ++ associated with \axiom{base} into regular chains. ++ Thus a point belongs to this variety iff it is a regular ++ zero of a regular set in in the output. ++ Note that \axiom{base} needs to be a lexicographical Groebner basis ++ of a zero-dimensional ideal. If \axiom{norm?} is \axiom{true} ++ then the regular sets are normalized. squareFreeLexTriangular: (LP, B) -> List ST ++ \axiom{squareFreeLexTriangular(base, norm?)} decomposes the variety ++ associated with \axiom{base} into square-free regular chains. ++ Thus a point belongs to this variety iff it is a regular ++ zero of a regular set in in the output. ++ Note that \axiom{base} needs to be a lexicographical Groebner basis ++ of a zero-dimensional ideal. If \axiom{norm?} is \axiom{true} ++ then the regular sets are normalized. zeroSetSplit: (LP, B) -> List TS ++ \axiom{zeroSetSplit(lp, norm?)} decomposes the variety ++ associated with \axiom{lp} into regular chains. ++ Thus a point belongs to this variety iff it is a regular ++ zero of a regular set in in the output. ++ Note that \axiom{lp} needs to generate a zero-dimensional ideal. ++ If \axiom{norm?} is \axiom{true} then the regular sets are normalized. zeroSetSplit: (LP, B) -> List ST ++ \axiom{zeroSetSplit(lp, norm?)} decomposes the variety ++ associated with \axiom{lp} into square-free regular chains. ++ Thus a point belongs to this variety iff it is a regular ++ zero of a regular set in in the output. ++ Note that \axiom{lp} needs to generate a zero-dimensional ideal. ++ If \axiom{norm?} is \axiom{true} then the regular sets are normalized. Implementation == add trueVariables(lp: List(P)): List Symbol == lv: List V := variables([lp]$PS) truels: List Symbol := [] for s in ls repeat if member?(variable(s)::V, lv) then truels := cons(s,truels) reverse truels zeroDimensional?(lp:List(P)): Boolean == truels: List Symbol := trueVariables(lp) fglmpack := FGLMIfCanPackage(R,truels) lq1: List(Q1) := [p::Q1 for p in lp] zeroDimensional?(lq1)$fglmpack fglmIfCan(lp:List(P)): Union(List(P), "failed") == truels: List Symbol := trueVariables(lp) fglmpack := FGLMIfCanPackage(R,truels) lq1: List(Q1) := [p::Q1 for p in lp] foo := fglmIfCan(lq1)$fglmpack foo case "failed" => return("failed" :: Union(List(P), "failed")) lp := [retract(q1)$P for q1 in (foo :: List(Q1))] lp::Union(List(P), "failed") groebner(lp:List(P)): List(P) == truels: List Symbol := trueVariables(lp) fglmpack := FGLMIfCanPackage(R,truels) lq1: List(Q1) := [p::Q1 for p in lp] lq1 := groebner(lq1)$fglmpack lp := [retract(q1)$P for q1 in lq1] lexTriangular(base: List(P), norm?: Boolean): List(TS) == base := sort(infRittWu?,base) base := remove(zero?, base) any?(ground?, base) => [] ts: TS := empty() toSee: List LpWTS := [[base,ts]$LpWTS] toSave: List TS := [] while not empty? toSee repeat lpwt := first toSee; toSee := rest toSee lp := lpwt.val; ts := lpwt.tower empty? lp => toSave := cons(ts, toSave) p := first lp; lp := rest lp; v := mvar(p) algebraic?(v,ts) => error "lexTriangular$LEXTRIPK: should never happen !" norm? and zero? remainder(init(p),ts).polnum => toSee := cons([lp, ts]$LpWTS, toSee) (not norm?) and zero? (initiallyReduce(init(p),ts)) => toSee := cons([lp, ts]$LpWTS, toSee) lbwt: List BWTS := invertible?(init(p),ts)$TS while (not empty? lbwt) repeat bwt := first lbwt; lbwt := rest lbwt b := bwt.val; us := bwt.tower (not b) => toSee := cons([lp, us], toSee) lus: List TS if norm? then newp := normalizedAssociate(p,us)$normalizpackTS lus := [internalAugment(newp,us)$TS] else newp := p lus := augment(newp,us)$TS newlp := lp while (not empty? newlp) and (mvar(first newlp) = v) repeat newlp := rest newlp for us: local in lus repeat toSee := cons([newlp, us]$LpWTS, toSee) algebraicSort(toSave)$quasicomppackTS zeroSetSplit(lp:List(P), norm?:B): List TS == bar := fglmIfCan(lp) bar case "failed" => error "zeroSetSplit$LEXTRIPK: #1 not zero-dimensional" lexTriangular(bar::(List P),norm?) squareFreeLexTriangular(base: List(P), norm?: Boolean): List(ST) == base := sort(infRittWu?,base) base := remove(zero?, base) any?(ground?, base) => [] ts: ST := empty() toSee: List LpWST := [[base,ts]$LpWST] toSave: List ST := [] while not empty? toSee repeat lpwt := first toSee; toSee := rest toSee lp := lpwt.val; ts := lpwt.tower empty? lp => toSave := cons(ts, toSave) p := first lp; lp := rest lp; v := mvar(p) algebraic?(v,ts) => error "lexTriangular$LEXTRIPK: should never happen !" norm? and zero? remainder(init(p),ts).polnum => toSee := cons([lp, ts]$LpWST, toSee) (not norm?) and zero? (initiallyReduce(init(p),ts)) => toSee := cons([lp, ts]$LpWST, toSee) lbwt: List BWST := invertible?(init(p),ts)$ST while (not empty? lbwt) repeat bwt := first lbwt; lbwt := rest lbwt b := bwt.val; us := bwt.tower (not b) => toSee := cons([lp, us], toSee) lus: List ST if norm? then newp := normalizedAssociate(p,us)$normalizpackST lus := augment(newp,us)$ST else lus := augment(p,us)$ST newlp := lp while (not empty? newlp) and (mvar(first newlp) = v) repeat newlp := rest newlp for us: local in lus repeat toSee := cons([newlp, us]$LpWST, toSee) algebraicSort(toSave)$quasicomppackST zeroSetSplit(lp:List(P), norm?:B): List ST == bar := fglmIfCan(lp) bar case "failed" => error "zeroSetSplit$LEXTRIPK: #1 not zero-dimensional" squareFreeLexTriangular(bar::(List P),norm?) @ \section{package IRURPK InternalRationalUnivariateRepresentationPackage} <<package IRURPK InternalRationalUnivariateRepresentationPackage>>= import EuclideanDomain import CharacteristicZero import OrderedAbelianMonoidSup import OrderedSet import RecursivePolynomialCategory import SquareFreeRegularTriangularSetCategory import List )abbrev package IRURPK InternalRationalUnivariateRepresentationPackage ++ Author: Marc Moreno Maza ++ Date Created: 01/1999 ++ Date Last Updated: 23/01/1999 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Description: ++ An internal package for computing the rational univariate representation ++ of a zero-dimensional algebraic variety given by a square-free ++ triangular set. ++ The main operation is \axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}. ++ It is based on the {\em generic} algorithm description in [1]. \newline References: ++ [1] D. LAZARD "Solving Zero-dimensional Algebraic Systems" ++ Journal of Symbolic Computation, 1992, 13, 117-131 ++ Version: 1. InternalRationalUnivariateRepresentationPackage(R,E,V,P,TS): Exports == Implementation where R : Join(EuclideanDomain,CharacteristicZero) E : OrderedAbelianMonoidSup V : OrderedSet P : RecursivePolynomialCategory(R,E,V) TS : SquareFreeRegularTriangularSetCategory(R,E,V,P) N ==> NonNegativeInteger Z ==> Integer B ==> Boolean LV ==> List V LP ==> List P PWT ==> Record(val: P, tower: TS) LPWT ==> Record(val: LP, tower: TS) WIP ==> Record(pol: P, gap: Z, tower: TS) BWT ==> Record(val:Boolean, tower: TS) polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P) normpack ==> NormalizationPackage(R,E,V,P,TS) Exports == with rur: (TS,B) -> List TS ++ \spad{rur(ts,univ?)} returns a rational univariate representation ++ of \spad{ts}. This assumes that the lowest polynomial in \spad{ts} ++ is a variable \spad{v} which does not occur in the other polynomials ++ of \spad{ts}. This variable will be used to define the simple ++ algebraic extension over which these other polynomials will be ++ rewritten as univariate polynomials with degree one. ++ If \spad{univ?} is \spad{true} then these polynomials will have ++ a constant initial. checkRur: (TS, List TS) -> Boolean ++ \spad{checkRur(ts,lus)} returns \spad{true} if \spad{lus} ++ is a rational univariate representation of \spad{ts}. Implementation == add checkRur(ts: TS, lts: List TS): Boolean == f0 := last(ts)::P z := mvar(f0) ts := collectUpper(ts,z) dts: N := degree(ts) lp := members(ts) dlts: N := 0 for us in lts repeat dlts := dlts + degree(us) rems := [removeZero(p,us) for p in lp] not every?(zero?,rems) => output(us::OutputForm)$OutputPackage return false (dts =$N dlts)@Boolean convert(p:P,sqfr?:B):TS == -- if sqfr? ASSUME p is square-free newts: TS := empty() sqfr? => internalAugment(p,newts) p := squareFreePart(p) internalAugment(p,newts) prepareRur(ts: TS): List LPWT == not purelyAlgebraic?(ts)$TS => error "rur$IRURPK: #1 is not zero-dimensional" lp: LP := members(ts)$TS lp := sort(infRittWu?,lp) empty? lp => error "rur$IRURPK: #1 is empty" f0 := first lp; lp := rest lp not (one?(init(f0)) and one?(mdeg(f0)) and zero?(tail(f0))) => error "rur$IRURPK: #1 has no generating root." empty? lp => error "rur$IRURPK: #1 has a generating root but no indeterminates" z: V := mvar(f0) f1 := first lp; lp := rest lp x1: V := mvar(f1) newf1 := x1::P - z::P toSave: List LPWT := [] for ff1 in irreducibleFactors([f1])$polsetpack repeat newf0 := eval(ff1,mvar(f1),f0) ts := internalAugment(newf1,convert(newf0,true)@TS) toSave := cons([lp,ts],toSave) toSave makeMonic(z:V,c:P,r:P,ts:TS,s:P,univ?:B): TS == --ASSUME r is a irreducible univariate polynomial in z --ASSUME c and s only depends on z and mvar(s) --ASSUME c and a have main degree 1 --ASSUME c and s have a constant initial --ASSUME mvar(ts) < mvar(s) lp: LP := members(ts) lp := sort(infRittWu?,lp) newts: TS := convert(r,true)@TS s := remainder(s,newts).polnum if univ? then s := normalizedAssociate(s,newts)$normpack for p in lp repeat p := lazyPrem(eval(p,z,c),s) p := remainder(p,newts).polnum newts := internalAugment(p,newts) internalAugment(s,newts) next(lambda:Z):Z == if negative? lambda then lambda := - lambda + 1 else lambda := - lambda makeLinearAndMonic(p: P, xi: V, ts: TS, univ?:B, check?: B, info?: B): List TS == -- if check? THEN some VERIFICATIONS are performed -- if info? THEN some INFORMATION is displayed f0 := last(ts)::P z: V := mvar(f0) lambda: Z := 1 ts := collectUpper(ts,z) toSee: List WIP := [[f0,lambda,ts]$WIP] toSave: List TS := [] while not empty? toSee repeat wip := first toSee; toSee := rest toSee (f0, lambda, ts) := (wip.pol, wip.gap, wip.tower) if check? and ((not univariate?(f0)$polsetpack) or (mvar(f0) ~= z)) then output("Bad f0: ")$OutputPackage output(f0::OutputForm)$OutputPackage c: P := lambda * xi::P + z::P f := eval(f0,z,c); q := eval(p,z,c) prs := subResultantChain(q,f) r := first prs; prs := rest prs check? and ((not zero? degree(r,xi)) or (empty? prs)) => error "rur$IRURPK: should never happen !" s := first prs; prs := rest prs check? and (zero? degree(s,xi)) and (empty? prs) => error "rur$IRURPK: should never happen !!" if zero? degree(s,xi) then s := first prs not one? degree(s,xi) => toSee := cons([f0,next(lambda),ts]$WIP,toSee) h := init(s) r := squareFreePart(r) ground?(h) or ground?(gcd(h,r)) => for fr in irreducibleFactors([r])$polsetpack repeat ground? fr => "leave" toSave := cons(makeMonic(z,c,fr,ts,s,univ?),toSave) if info? then output("Unlucky lambda")$OutputPackage output(h::OutputForm)$OutputPackage output(r::OutputForm)$OutputPackage toSee := cons([f0,next(lambda),ts]$WIP,toSee) toSave rur (ts: TS,univ?:Boolean): List TS == toSee: List LPWT := prepareRur(ts) toSave: List TS := [] while not empty? toSee repeat wip := first toSee; toSee := rest toSee ts: TS := wip.tower lp: LP := wip.val empty? lp => toSave := cons(ts,toSave) p := first lp; lp := rest lp xi: V := mvar(p) p := remainder(p,ts).polnum if not univ? then p := primitivePart stronglyReduce(p,ts) ground?(p) or (mvar(p) < xi) => error "rur$IRUROK: should never happen" (one? mdeg(p)) and (ground? init(p)) => ts := internalAugment(p,ts) wip := [lp,ts] toSee := cons(wip,toSee) lts := makeLinearAndMonic(p,xi,ts,univ?,false,false) for ts: local in lts repeat wip := [lp,ts] toSee := cons(wip,toSee) toSave @ \section{package RURPK RationalUnivariateRepresentationPackage} <<package RURPK RationalUnivariateRepresentationPackage>>= import EuclideanDomain import CharacteristicZero import Symbol import List )abbrev package RURPK RationalUnivariateRepresentationPackage ++ Author: Marc Moreno Maza ++ Date Created: 01/1999 ++ Date Last Updated: 23/01/1999 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Description: ++ A package for computing the rational univariate representation ++ of a zero-dimensional algebraic variety given by a regular ++ triangular set. This package is essentially an interface for the ++ \spadtype{InternalRationalUnivariateRepresentationPackage} constructor. ++ It is used in the \spadtype{ZeroDimensionalSolvePackage} ++ for solving polynomial systems with finitely many solutions. ++ Version: 1. RationalUnivariateRepresentationPackage(R,ls): Exports == Implementation where R : Join(EuclideanDomain,CharacteristicZero) ls: List Symbol N ==> NonNegativeInteger Z ==> Integer P ==> Polynomial R LP ==> List P U ==> SparseUnivariatePolynomial(R) RUR ==> Record(complexRoots: U, coordinates: LP) Exports == with rur: (LP,Boolean) -> List RUR ++ \spad{rur(lp,univ?)} returns a rational univariate representation ++ of \spad{lp}. This assumes that \spad{lp} defines a regular ++ triangular \spad{ts} whose associated variety is zero-dimensional ++ over \spad{R}. \spad{rur(lp,univ?)} returns a list of items ++ \spad{[u,lc]} where \spad{u} is an irreducible univariate polynomial ++ and each \spad{c} in \spad{lc} involves two variables: one from \spad{ls}, ++ called the coordinate of \spad{c}, and an extra variable which ++ represents any root of \spad{u}. Every root of \spad{u} leads to ++ a tuple of values for the coordinates of \spad{lc}. Moreover, ++ a point \spad{x} belongs to the variety associated with \spad{lp} iff ++ there exists an item \spad{[u,lc]} in \spad{rur(lp,univ?)} and ++ a root \spad{r} of \spad{u} such that \spad{x} is given by the ++ tuple of values for the coordinates of \spad{lc} evaluated at \spad{r}. ++ If \spad{univ?} is \spad{true} then each polynomial \spad{c} ++ will have a constant leading coefficient w.r.t. its coordinate. ++ See the example which illustrates the \spadtype{ZeroDimensionalSolvePackage} ++ package constructor. rur: (LP) -> List RUR ++ \spad{rur(lp)} returns the same as \spad{rur(lp,true)} rur: (LP,Boolean,Boolean) -> List RUR ++ \spad{rur(lp,univ?,check?)} returns the same as \spad{rur(lp,true)}. ++ Moreover, if \spad{check?} is \spad{true} then the result is checked. Implementation == add news: Symbol := new()$Symbol lv: List Symbol := concat(ls,news) V ==> OrderedVariableList(lv) Q ==> NewSparseMultivariatePolynomial(R,V) E ==> IndexedExponents V TS ==> SquareFreeRegularTriangularSet(R,E,V,Q) QWT ==> Record(val: Q, tower: TS) LQWT ==> Record(val: List Q, tower: TS) polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,Q) normpack ==> NormalizationPackage(R,E,V,Q,TS) rurpack ==> InternalRationalUnivariateRepresentationPackage(R,E,V,Q,TS) newv: V := variable(news)::V newq : Q := newv :: Q rur(lp: List P, univ?: Boolean, check?: Boolean): List RUR == lp := remove(zero?,lp) empty? lp => error "rur$RURPACK: #1 is empty" any?(ground?,lp) => error "rur$RURPACK: #1 is not a triangular set" ts: TS := [[newq]$(List Q)] lq: List Q := [] for p in lp repeat rif: Union(Q,"failed") := retractIfCan(p)$Q rif case "failed" => error "rur$RURPACK: #1 is not a subset of R[ls]" q: Q := rif::Q lq := cons(q,lq) lq := sort(infRittWu?,lq) toSee: List LQWT := [[lq,ts]$LQWT] toSave: List TS := [] while not empty? toSee repeat lqwt := first toSee; toSee := rest toSee lq := lqwt.val; ts := lqwt.tower empty? lq => -- output(ts::OutputForm)$OutputPackage toSave := cons(ts,toSave) q := first lq; lq := rest lq not (mvar(q) > mvar(ts)) => error "rur$RURPACK: #1 is not a triangular set" empty? (rest(ts)::TS) => lfq := irreducibleFactors([q])$polsetpack for fq in lfq repeat newts := internalAugment(fq,ts) newlq := [remainder(q,newts).polnum for q in lq] toSee := cons([newlq,newts]$LQWT,toSee) lsfqwt: List QWT := squareFreePart(q,ts) for qwt in lsfqwt repeat q := qwt.val; ts := qwt.tower if not ground? init(q) then q := normalizedAssociate(q,ts)$normpack newts := internalAugment(q,ts) newlq := [remainder(q,newts).polnum for q in lq] toSee := cons([newlq,newts]$LQWT,toSee) toReturn: List RUR := [] for ts: local in toSave repeat lus := rur(ts,univ?)$rurpack check? and (not checkRur(ts,lus)$rurpack) => output("RUR for: ")$OutputPackage output(ts::OutputForm)$OutputPackage output("Is: ")$OutputPackage for us in lus repeat output(us::OutputForm)$OutputPackage error "rur$RURPACK: bad result with function rur$IRURPK" for us in lus repeat g: U := univariate(select(us,newv)::Q)$Q lc: LP := [convert(q)@P for q in members(collectUpper(us,newv))] toReturn := cons([g,lc]$RUR, toReturn) toReturn rur(lp: List P, univ?: Boolean): List RUR == rur(lp,univ?,false) rur(lp: List P): List RUR == rur(lp,true) @ \section{package ZDSOLVE ZeroDimensionalSolvePackage} Based on triangular decompositions and the {\bf RealClosure} constructor, the pacakge {\bf ZeroDimensionalSolvePackage} provides operations for computing symbolically the real or complex roots of polynomial systems with finitely many solutions. <<package ZDSOLVE ZeroDimensionalSolvePackage>>= import OrderedRing import EuclideanDomain import CharacteristicZero import RealConstant )abbrev package ZDSOLVE ZeroDimensionalSolvePackage ++ Author: Marc Moreno Maza ++ Date Created: 23/01/1999 ++ Date Last Updated: 08/02/1999 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A package for computing symbolically the complex and real roots of ++ zero-dimensional algebraic systems over the integer or rational ++ numbers. Complex roots are given by means of univariate representations ++ of irreducible regular chains. Real roots are given by means of tuples ++ of coordinates lying in the \spadtype{RealClosure} of the coefficient ring. ++ This constructor takes three arguments. The first one \spad{R} is the ++ coefficient ring. The second one \spad{ls} is the list of variables involved ++ in the systems to solve. The third one must be \spad{concat(ls,s)} where ++ \spad{s} is an additional symbol used for the univariate representations. ++ WARNING: The third argument is not checked. ++ All operations are based on triangular decompositions. ++ The default is to compute these decompositions directly from the input ++ system by using the \spadtype{RegularChain} domain constructor. ++ The lexTriangular algorithm can also be used for computing these decompositions ++ (see the \spadtype{LexTriangularPackage} package constructor). ++ For that purpose, the operations \axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage}, ++ \axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and ++ \axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional ++ argument. \newline Author: Marc Moreno Maza. ++ Version: 1. ZeroDimensionalSolvePackage(R,ls,ls2): Exports == Implementation where R : Join(OrderedRing,EuclideanDomain,CharacteristicZero,RealConstant) ls: List Symbol ls2: List Symbol V ==> OrderedVariableList(ls) N ==> NonNegativeInteger Z ==> Integer B ==> Boolean P ==> Polynomial R LP ==> List P LS ==> List Symbol Q ==> NewSparseMultivariatePolynomial(R,V) U ==> SparseUnivariatePolynomial(R) TS ==> RegularChain(R,ls) RUR ==> Record(complexRoots: U, coordinates: LP) K ==> Fraction R RC ==> RealClosure(K) PRC ==> Polynomial RC REALSOL ==> List RC URC ==> SparseUnivariatePolynomial RC V2 ==> OrderedVariableList(ls2) Q2 ==> NewSparseMultivariatePolynomial(R,V2) E2 ==> IndexedExponents V2 ST ==> SquareFreeRegularTriangularSet(R,E2,V2,Q2) Q2WT ==> Record(val: Q2, tower: ST) LQ2WT ==> Record(val: List(Q2), tower: ST) WIP ==> Record(reals: List(RC), vars: List(Symbol), pols: List(Q2)) polsetpack ==> PolynomialSetUtilitiesPackage(R,E2,V2,Q2) normpack ==> NormalizationPackage(R,E2,V2,Q2,ST) rurpack ==> InternalRationalUnivariateRepresentationPackage(R,E2,V2,Q2,ST) quasicomppack ==> SquareFreeQuasiComponentPackage(R,E2,V2,Q2,ST) lextripack ==> LexTriangularPackage(R,ls) Exports == with triangSolve: (LP,B,B) -> List RegularChain(R,ls) ++ \spad{triangSolve(lp,info?,lextri?)} decomposes the variety ++ associated with \axiom{lp} into regular chains. ++ Thus a point belongs to this variety iff it is a regular ++ zero of a regular set in in the output. ++ Note that \axiom{lp} needs to generate a zero-dimensional ideal. ++ If \axiom{lp} is not zero-dimensional then the result is only ++ a decomposition of its zero-set in the sense of the closure ++ (w.r.t. Zarisky topology). ++ Moreover, if \spad{info?} is \spad{true} then some information is ++ displayed during the computations. ++ See \axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(lp,true,info?). ++ If \spad{lextri?} is \spad{true} then the lexTriangular algorithm is called ++ from the \spadtype{LexTriangularPackage} constructor ++ (see \axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,false)). ++ Otherwise, the triangular decomposition is computed directly from the input ++ system by using the \axiomOpFrom{zeroSetSplit}{RegularChain} from \spadtype{RegularChain}. triangSolve: (LP,B) -> List RegularChain(R,ls) ++ \spad{triangSolve(lp,info?)} returns the same as \spad{triangSolve(lp,false)} triangSolve: LP -> List RegularChain(R,ls) ++ \spad{triangSolve(lp)} returns the same as \spad{triangSolve(lp,false,false)} univariateSolve: RegularChain(R,ls) -> List Record(complexRoots: U, coordinates: LP) ++ \spad{univariateSolve(ts)} returns a univariate representation ++ of \spad{ts}. ++ See \axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,true). univariateSolve: (LP,B,B,B) -> List RUR ++ \spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate ++ representation of the variety associated with \spad{lp}. ++ Moreover, if \spad{info?} is \spad{true} then some information is ++ displayed during the decomposition into regular chains. ++ If \spad{check?} is \spad{true} then the result is checked. ++ See \axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,true). ++ If \spad{lextri?} is \spad{true} then the lexTriangular algorithm is called ++ from the \spadtype{LexTriangularPackage} constructor ++ (see \axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,false)). ++ Otherwise, the triangular decomposition is computed directly from the input ++ system by using the \axiomOpFrom{zeroSetSplit}{RegularChain} from \spadtype{RegularChain}. univariateSolve: (LP,B,B) -> List RUR ++ \spad{univariateSolve(lp,info?,check?)} returns the same as ++ \spad{univariateSolve(lp,info?,check?,false)}. univariateSolve: (LP,B) -> List RUR ++ \spad{univariateSolve(lp,info?)} returns the same as ++ \spad{univariateSolve(lp,info?,false,false)}. univariateSolve: LP -> List RUR ++ \spad{univariateSolve(lp)} returns the same as ++ \spad{univariateSolve(lp,false,false,false)}. realSolve: RegularChain(R,ls) -> List REALSOL ++ \spad{realSolve(ts)} returns the set of the points in the regular ++ zero set of \spad{ts} whose coordinates are all real. ++ WARNING: For each set of coordinates given by \spad{realSolve(ts)} ++ the ordering of the indeterminates is reversed w.r.t. \spad{ls}. realSolve: (LP,B,B,B) -> List REALSOL ++ \spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points ++ in the variety associated with \spad{lp} whose coordinates are all real. ++ Moreover, if \spad{info?} is \spad{true} then some information is ++ displayed during decomposition into regular chains. ++ If \spad{check?} is \spad{true} then the result is checked. ++ If \spad{lextri?} is \spad{true} then the lexTriangular algorithm is called ++ from the \spadtype{LexTriangularPackage} constructor ++ (see \axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,false)). ++ Otherwise, the triangular decomposition is computed directly from the input ++ system by using the \axiomOpFrom{zeroSetSplit}{RegularChain} from \spadtype{RegularChain}. ++ WARNING: For each set of coordinates given by \spad{realSolve(ts,info?,check?,lextri?)} ++ the ordering of the indeterminates is reversed w.r.t. \spad{ls}. realSolve: (LP,B,B) -> List REALSOL ++ \spad{realSolve(ts,info?,check?)} returns the same as \spad{realSolve(ts,info?,check?,false)}. realSolve: (LP,B) -> List REALSOL ++ \spad{realSolve(ts,info?)} returns the same as \spad{realSolve(ts,info?,false,false)}. realSolve: LP -> List REALSOL ++ \spad{realSolve(lp)} returns the same as \spad{realSolve(ts,false,false,false)} positiveSolve: RegularChain(R,ls) -> List REALSOL ++ \spad{positiveSolve(ts)} returns the points of the regular ++ set of \spad{ts} with (real) strictly positive coordinates. positiveSolve: (LP,B,B) -> List REALSOL ++ \spad{positiveSolve(lp,info?,lextri?)} returns the set of the points ++ in the variety associated with \spad{lp} whose coordinates are (real) strictly positive. ++ Moreover, if \spad{info?} is \spad{true} then some information is ++ displayed during decomposition into regular chains. ++ If \spad{lextri?} is \spad{true} then the lexTriangular algorithm is called ++ from the \spadtype{LexTriangularPackage} constructor ++ (see \axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,false)). ++ Otherwise, the triangular decomposition is computed directly from the input ++ system by using the \axiomOpFrom{zeroSetSplit}{RegularChain} from \spadtype{RegularChain}. ++ WARNING: For each set of coordinates given by \spad{positiveSolve(lp,info?,lextri?)} ++ the ordering of the indeterminates is reversed w.r.t. \spad{ls}. positiveSolve: (LP,B) -> List REALSOL ++ \spad{positiveSolve(lp)} returns the same as \spad{positiveSolve(lp,info?,false)}. positiveSolve: LP -> List REALSOL ++ \spad{positiveSolve(lp)} returns the same as \spad{positiveSolve(lp,false,false)}. squareFree: (TS) -> List ST ++ \spad{squareFree(ts)} returns the square-free factorization of \spad{ts}. ++ Moreover, each factor is a Lazard triangular set and the decomposition ++ is a Kalkbrener split of \spad{ts}, which is enough here for ++ the matter of solving zero-dimensional algebraic systems. ++ WARNING: \spad{ts} is not checked to be zero-dimensional. convert: Q -> Q2 ++ \spad{convert(q)} converts \spad{q}. convert: P -> PRC ++ \spad{convert(p)} converts \spad{p}. convert: Q2 -> PRC ++ \spad{convert(q)} converts \spad{q}. convert: U -> URC ++ \spad{convert(u)} converts \spad{u}. convert: ST -> List Q2 ++ \spad{convert(st)} returns the members of \spad{st}. Implementation == add news: Symbol := last(ls2)$(List Symbol) newv: V2 := (variable(news)$V2)::V2 newq: Q2 := newv :: Q2 convert(q:Q):Q2 == ground? q => (ground(q))::Q2 q2: Q2 := 0 while not ground?(q) repeat v: V := mvar(q) d: N := mdeg(q) v2: V2 := (variable(convert(v)@Symbol)$V2)::V2 iq2: Q2 := convert(init(q))@Q2 lq2: Q2 := (v2 :: Q2) lq2 := lq2 ** d q2 := iq2 * lq2 + q2 q := tail(q) q2 + (ground(q))::Q2 squareFree(ts:TS):List(ST) == irred?: Boolean := false st: ST := [[newq]$(List Q2)] lq: List(Q2) := [convert(p)@Q2 for p in members(ts)] lq := sort(infRittWu?,lq) toSee: List LQ2WT := [] if irred? then lf := irreducibleFactors([first lq])$polsetpack lq := rest lq for f in lf repeat toSee := cons([cons(f,lq),st]$LQ2WT, toSee) else toSee := [[lq,st]$LQ2WT] toSave: List ST := [] while not empty? toSee repeat lqwt := first toSee; toSee := rest toSee lq := lqwt.val; st := lqwt.tower empty? lq => toSave := cons(st,toSave) q := first lq; lq := rest lq lsfqwt: List Q2WT := squareFreePart(q,st)$ST for sfqwt in lsfqwt repeat q := sfqwt.val; st := sfqwt.tower if not ground? init(q) then q := normalizedAssociate(q,st)$normpack newts := internalAugment(q,st)$ST newlq := [remainder(q,newts).polnum for q in lq] toSee := cons([newlq,newts]$LQ2WT,toSee) toSave triangSolve(lp: LP, info?: B, lextri?: B): List TS == lq: List(Q) := [convert(p)$Q for p in lp] lextri? => zeroSetSplit(lq,false)$lextripack zeroSetSplit(lq,true,info?)$TS triangSolve(lp: LP, info?: B): List TS == triangSolve(lp,info?,false) triangSolve(lp: LP): List TS == triangSolve(lp,false) convert(u: U): URC == zero? u => 0 ground? u => ((ground(u) :: K)::RC)::URC uu: URC := 0 while not ground? u repeat uu := monomial((leadingCoefficient(u) :: K):: RC,degree(u)) + uu u := reductum u uu + ((ground(u) :: K)::RC)::URC coerceFromRtoRC(r:R): RC == (r::K)::RC convert(p:P): PRC == map(coerceFromRtoRC,p)$PolynomialFunctions2(R,RC) convert(q2:Q2): PRC == p: P := coerce(q2)$Q2 convert(p)@PRC convert(sts:ST): List Q2 == lq2: List(Q2) := members(sts)$ST lq2 := sort(infRittWu?,lq2) rest(lq2) realSolve(ts: TS): List REALSOL == lsts: List ST := squareFree(ts) lr: REALSOL := [] lv: List Symbol := [] toSee := [[lr,lv,convert(sts)@(List Q2)]$WIP for sts in lsts] toSave: List REALSOL := [] while not empty? toSee repeat wip := first toSee; toSee := rest toSee lr := wip.reals; lv := wip.vars; lq2 := wip.pols (empty? lq2) and (not empty? lr) => toSave := cons(reverse(lr),toSave) q2 := first lq2; lq2 := rest lq2 qrc := convert(q2)@PRC if not empty? lr then for r in reverse(lr) for v in reverse(lv) repeat qrc := eval(qrc,v,r) lv := cons((mainVariable(qrc) :: Symbol),lv) urc: URC := univariate(qrc)@URC urcRoots := allRootsOf(urc)$RC for urcRoot in urcRoots repeat toSee := cons([cons(urcRoot,lr),lv,lq2]$WIP, toSee) toSave realSolve(lp: List(P), info?:Boolean, check?:Boolean, lextri?: Boolean): List REALSOL == lts: List TS lq: List(Q) := [convert(p)$Q for p in lp] if lextri? then lts := zeroSetSplit(lq,false)$lextripack else lts := zeroSetSplit(lq,true,info?)$TS lsts: List ST := [] for ts in lts repeat lsts := concat(squareFree(ts), lsts) lsts := removeSuperfluousQuasiComponents(lsts)$quasicomppack lr: REALSOL := [] lv: List Symbol := [] toSee := [[lr,lv,convert(sts)@(List Q2)]$WIP for sts in lsts] toSave: List REALSOL := [] while not empty? toSee repeat wip := first toSee; toSee := rest toSee lr := wip.reals; lv := wip.vars; lq2 := wip.pols (empty? lq2) and (not empty? lr) => toSave := cons(reverse(lr),toSave) q2 := first lq2; lq2 := rest lq2 qrc := convert(q2)@PRC if not empty? lr then for r in reverse(lr) for v in reverse(lv) repeat qrc := eval(qrc,v,r) lv := cons((mainVariable(qrc) :: Symbol),lv) urc: URC := univariate(qrc)@URC urcRoots := allRootsOf(urc)$RC for urcRoot in urcRoots repeat toSee := cons([cons(urcRoot,lr),lv,lq2]$WIP, toSee) if check? then for p in lp repeat for realsol in toSave repeat prc: PRC := convert(p)@PRC for rr in realsol for symb in reverse(ls) repeat prc := eval(prc,symb,rr) not zero? prc => error "realSolve$ZDSOLVE: bad result" toSave realSolve(lp: List(P), info?:Boolean, check?:Boolean): List REALSOL == realSolve(lp,info?,check?,false) realSolve(lp: List(P), info?:Boolean): List REALSOL == realSolve(lp,info?,false,false) realSolve(lp: List(P)): List REALSOL == realSolve(lp,false,false,false) positiveSolve(ts: TS): List REALSOL == lsts: List ST := squareFree(ts) lr: REALSOL := [] lv: List Symbol := [] toSee := [[lr,lv,convert(sts)@(List Q2)]$WIP for sts in lsts] toSave: List REALSOL := [] while not empty? toSee repeat wip := first toSee; toSee := rest toSee lr := wip.reals; lv := wip.vars; lq2 := wip.pols (empty? lq2) and (not empty? lr) => toSave := cons(reverse(lr),toSave) q2 := first lq2; lq2 := rest lq2 qrc := convert(q2)@PRC if not empty? lr then for r in reverse(lr) for v in reverse(lv) repeat qrc := eval(qrc,v,r) lv := cons((mainVariable(qrc) :: Symbol),lv) urc: URC := univariate(qrc)@URC urcRoots := allRootsOf(urc)$RC for urcRoot in urcRoots repeat if positive? urcRoot then toSee := cons([cons(urcRoot,lr),lv,lq2]$WIP, toSee) toSave positiveSolve(lp: List(P), info?:Boolean, lextri?: Boolean): List REALSOL == lts: List TS lq: List(Q) := [convert(p)$Q for p in lp] if lextri? then lts := zeroSetSplit(lq,false)$lextripack else lts := zeroSetSplit(lq,true,info?)$TS lsts: List ST := [] for ts in lts repeat lsts := concat(squareFree(ts), lsts) lsts := removeSuperfluousQuasiComponents(lsts)$quasicomppack lr: REALSOL := [] lv: List Symbol := [] toSee := [[lr,lv,convert(sts)@(List Q2)]$WIP for sts in lsts] toSave: List REALSOL := [] while not empty? toSee repeat wip := first toSee; toSee := rest toSee lr := wip.reals; lv := wip.vars; lq2 := wip.pols (empty? lq2) and (not empty? lr) => toSave := cons(reverse(lr),toSave) q2 := first lq2; lq2 := rest lq2 qrc := convert(q2)@PRC if not empty? lr then for r in reverse(lr) for v in reverse(lv) repeat qrc := eval(qrc,v,r) lv := cons((mainVariable(qrc) :: Symbol),lv) urc: URC := univariate(qrc)@URC urcRoots := allRootsOf(urc)$RC for urcRoot in urcRoots repeat if positive? urcRoot then toSee := cons([cons(urcRoot,lr),lv,lq2]$WIP, toSee) toSave positiveSolve(lp: List(P), info?:Boolean): List REALSOL == positiveSolve(lp, info?, false) positiveSolve(lp: List(P)): List REALSOL == positiveSolve(lp, false, false) univariateSolve(ts: TS): List RUR == toSee: List ST := squareFree(ts) toSave: List RUR := [] for st in toSee repeat lus: List ST := rur(st,true)$rurpack for us in lus repeat g: U := univariate(select(us,newv)::Q2)$Q2 lc: LP := [convert(q2)@P for q2 in members(collectUpper(us,newv)$ST)$ST] toSave := cons([g,lc]$RUR, toSave) toSave univariateSolve(lp: List(P), info?:Boolean, check?:Boolean, lextri?: Boolean): List RUR == lts: List TS lq: List(Q) := [convert(p)$Q for p in lp] if lextri? then lts := zeroSetSplit(lq,false)$lextripack else lts := zeroSetSplit(lq,true,info?)$TS toSee: List ST := [] for ts in lts repeat toSee := concat(squareFree(ts), toSee) toSee := removeSuperfluousQuasiComponents(toSee)$quasicomppack toSave: List RUR := [] if check? then lq2: List(Q2) := [convert(p)$Q2 for p in lp] for st in toSee repeat lus: List ST := rur(st,true)$rurpack for us in lus repeat if check? then rems: List(Q2) := [removeZero(q2,us)$ST for q2 in lq2] not every?(zero?,rems) => output(st::OutputForm)$OutputPackage output("Has a bad RUR component:")$OutputPackage output(us::OutputForm)$OutputPackage error "univariateSolve$ZDSOLVE: bad RUR" g: U := univariate(select(us,newv)::Q2)$Q2 lc: LP := [convert(q2)@P for q2 in members(collectUpper(us,newv)$ST)$ST] toSave := cons([g,lc]$RUR, toSave) toSave univariateSolve(lp: List(P), info?:Boolean, check?:Boolean): List RUR == univariateSolve(lp,info?,check?,false) univariateSolve(lp: List(P), info?:Boolean): List RUR == univariateSolve(lp,info?,false,false) univariateSolve(lp: List(P)): List RUR == univariateSolve(lp,false,false,false) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package FGLMICPK FGLMIfCanPackage>> <<domain RGCHAIN RegularChain>> <<package LEXTRIPK LexTriangularPackage>> <<package IRURPK InternalRationalUnivariateRepresentationPackage>> <<package RURPK RationalUnivariateRepresentationPackage>> <<package ZDSOLVE ZeroDimensionalSolvePackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}