\documentclass{article} \usepackage{open-axiom} \begin{document} \title{src/algebra weier.spad} \author{William H. Burge} \maketitle \begin{abstract} \end{abstract} \tableofcontents \eject \section{package WEIER WeierstrassPreparation} <<package WEIER WeierstrassPreparation>>= import Field import NonNegativeInteger )abbrev package WEIER WeierstrassPreparation ++ Author:William H. Burge ++ Date Created:Sept 1988 ++ Date Last Updated:Feb 15 1992 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: This package implements the Weierstrass preparation ++ theorem f or multivariate power series. ++ weierstrass(v,p) where v is a variable, and p is a ++ TaylorSeries(R) in which the terms ++ of lowest degree s must include c*v**s where c is a constant,s>0, ++ is a list of TaylorSeries coefficients A[i] of the ++ equivalent polynomial ++ A = A[0] + A[1]*v + A[2]*v**2 + ... + A[s-1]*v**(s-1) + v**s ++ such that p=A*B , B being a TaylorSeries of minimum degree 0 WeierstrassPreparation(R): Defn == Impl where R : Field VarSet==>Symbol SMP ==> Polynomial R PS ==> InnerTaylorSeries SMP NNI ==> NonNegativeInteger ST ==> Stream StS ==> Stream SMP STPS==>StreamTaylorSeriesOperations STTAYLOR==>StreamTaylorSeriesOperations SUP==> SparseUnivariatePolynomial(SMP) ST2==>StreamFunctions2 SMPS==> TaylorSeries(R) L==>List null ==> empty? likeUniv ==> univariate coef ==> coefficient$SUP nil ==> empty Defn ==> with crest:(NNI->( StS-> StS)) ++\spad{crest n} is used internally. cfirst:(NNI->( StS-> StS)) ++\spad{cfirst n} is used internally. sts2stst:(VarSet,StS)->ST StS ++\spad{sts2stst(v,s)} is used internally. clikeUniv:VarSet->(SMP->SUP) ++\spad{clikeUniv(v)} is used internally. weierstrass:(VarSet,SMPS)->L SMPS ++\spad{weierstrass(v,ts)} where v is a variable and ts is ++ a TaylorSeries, impements the Weierstrass Preparation ++ Theorem. The result is a list of TaylorSeries that ++ are the coefficients of the equivalent series. qqq:(NNI,SMPS,ST SMPS)->((ST SMPS)->ST SMPS) ++\spad{qqq(n,s,st)} is used internally. Impl ==> add import TaylorSeries(R) import StreamTaylorSeriesOperations SMP import StreamTaylorSeriesOperations SMPS map1==>map$(ST2(SMP,SUP)) map2==>map$(ST2(StS,SMP)) map3==>map$(ST2(StS,StS)) transback:ST SMPS->L SMPS transback smps== if null smps then nil()$(L SMPS) else if null first (smps:(ST StS)) then nil()$(L SMPS) else cons(map2(first,smps:ST StS):SMPS, transback(map3(rest,smps:ST StS):(ST SMPS)))$(L SMPS) clikeUniv(var)==likeUniv(#1,var) mind:(NNI,StS)->NNI mind(n, sts)== if null sts then error "no mindegree" else if first sts=0 then mind(n+1,rest sts) else n mindegree (sts:StS):NNI== mind(0,sts) streamlikeUniv:(SUP,NNI)->StS streamlikeUniv(p:SUP,n:NNI): StS == if n=0 then cons(coef (p,0),nil()$StS) else cons(coef (p,n),streamlikeUniv(p,(n-1):NNI)) transpose:ST StS->ST StS transpose(s:ST StS)==delay( if null s then nil()$(ST StS) else cons(map2(first,s),transpose(map3(rest,rst s)))) zp==>map$StreamFunctions3(SUP,NNI,StS) sts2stst(var, sts)== zp(streamlikeUniv(#1,#2), map1(clikeUniv var, sts),(integers 0):(ST NNI)) tp:(VarSet,StS)->ST StS tp(v,sts)==transpose sts2stst(v,sts) map4==>map$(ST2 (StS,StS)) maptake:(NNI,ST StS)->ST SMPS maptake(n,p)== map4(cfirst n,p) pretend ST SMPS mapdrop:(NNI,ST StS)->ST SMPS mapdrop(n,p)== map4(crest n,p) pretend ST SMPS YSS==>Y$ParadoxicalCombinatorsForStreams(SMPS) weier:(VarSet,StS)->ST SMPS weier(v,sts)== a:=mindegree sts if a=0 then error "has constant term" else p:=tp(v,sts) pretend (ST SMPS) b:StS:=rest(((first p pretend StS)),a::NNI) c:=retractIfCan first b c case "failed"=>_ error "the coefficient of the lowest degree of the variable should _ be a constant" e:=recip b f:= if e case "failed" then error "no reciprocal" else e::StS q:=(YSS qqq(a,f:SMPS,rest p)) maptake(a,(p*q) pretend ST StS) cfirst n== first(#1,n)$StS crest n== rest(#1,n)$StS qq:(NNI,SMPS,ST SMPS,ST SMPS)->ST SMPS qq(a,e,p,c)== cons(e,(-e)*mapdrop(a,(p*c)pretend(ST StS))) qqq(a,e,p)== qq(a,e,p,#1) wei:(VarSet,SMPS)->ST SMPS wei(v:VarSet,s:SMPS)==weier(v,s:StS) weierstrass(v,smps)== transback wei (v,smps) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package WEIER WeierstrassPreparation>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}