\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra vector.spad} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category VECTCAT VectorCategory} <<category VECTCAT VectorCategory>>= )abbrev category VECTCAT VectorCategory ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: DirectProductCategory, Vector, IndexedVector ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ \spadtype{VectorCategory} represents the type of vector like objects, ++ i.e. finite sequences indexed by some finite segment of the ++ integers. The operations available on vectors depend on the structure ++ of the underlying components. Many operations from the component domain ++ are defined for vectors componentwise. It can by assumed that extraction or ++ updating components can be done in constant time. VectorCategory(R:Type): Category == OneDimensionalArrayAggregate R with if R has AbelianSemiGroup then + : (%, %) -> % ++ x + y returns the component-wise sum of the vectors x and y. ++ Error: if x and y are not of the same length. if R has AbelianMonoid then zero: NonNegativeInteger -> % ++ zero(n) creates a zero vector of length n. if R has AbelianGroup then - : % -> % ++ -x negates all components of the vector x. - : (%, %) -> % ++ x - y returns the component-wise difference of the vectors x and y. ++ Error: if x and y are not of the same length. * : (Integer, %) -> % ++ n * y multiplies each component of the vector y by the integer n. if R has Monoid then * : (R, %) -> % ++ r * y multiplies the element r times each component of the vector y. * : (%, R) -> % ++ y * r multiplies each component of the vector y by the element r. if R has Ring then dot: (%, %) -> R ++ dot(x,y) computes the inner product of the two vectors x and y. ++ Error: if x and y are not of the same length. outerProduct: (%, %) -> Matrix R ++ outerProduct(u,v) constructs the matrix whose (i,j)'th element is ++ u(i)*v(j). cross: (%, %) -> % ++ vectorProduct(u,v) constructs the cross product of u and v. ++ Error: if u and v are not of length 3. if R has RadicalCategory and R has Ring then length: % -> R ++ length(v) computes the sqrt(dot(v,v)), i.e. the magnitude magnitude: % -> R ++ magnitude(v) computes the sqrt(dot(v,v)), i.e. the length add if R has AbelianSemiGroup then u + v == (n := #u) ~= #v => error "Vectors must be of the same length" map(_+ , u, v) if R has AbelianMonoid then zero n == new(n, 0) if R has AbelianGroup then - u == map(- #1, u) n:Integer * u:% == map(n * #1, u) u - v == u + (-v) if R has Monoid then u:% * r:R == map(#1 * r, u) r:R * u:% == map(r * #1, u) if R has Ring then dot(u, v) == #u ~= #v => error "Vectors must be of the same length" +/[qelt(u, i) * qelt(v, i) for i in minIndex u .. maxIndex u] outerProduct(u, v) == matrix [[qelt(u, i) * qelt(v,j) for i in minIndex u .. maxIndex u] _ for j in minIndex v .. maxIndex v] cross(u, v) == #u ~= 3 or #v ~= 3 => error "Vectors must be of length 3" construct [qelt(u, 2)*qelt(v, 3) - qelt(u, 3)*qelt(v, 2) , _ qelt(u, 3)*qelt(v, 1) - qelt(u, 1)*qelt(v, 3) , _ qelt(u, 1)*qelt(v, 2) - qelt(u, 2)*qelt(v, 1) ] if R has RadicalCategory and R has Ring then length p == sqrt(dot(p,p)) magnitude p == sqrt(dot(p,p)) @ \section{domain IVECTOR IndexedVector} <<domain IVECTOR IndexedVector>>= )abbrev domain IVECTOR IndexedVector ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: Vector, DirectProduct ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This type represents vector like objects with varying lengths ++ and a user-specified initial index. IndexedVector(R:Type, mn:Integer): VectorCategory R == IndexedOneDimensionalArray(R, mn) @ \section{domain VECTOR Vector} <<domain VECTOR Vector>>= )abbrev domain VECTOR Vector ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: IndexedVector, DirectProduct ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This type represents vector like objects with varying lengths ++ and indexed by a finite segment of integers starting at 1. Vector(R:Type): Exports == Implementation where Exports ==> VectorCategory R with vector: List R -> % ++ vector(l) converts the list l to a vector. Implementation ==> IndexedVector(R, 1) add vector l == construct l -- We want maxIndex to be inlined. Ideally, the definition should -- read -- maxIndex x == # rep x -- However, there is currently an infelicity in the compiler that -- prevents good uses of dependent domains. So, we fall back to maxIndex x == sizeOfSimpleArray(x)$Foreign(Builtin) if R has ConvertibleTo InputForm then convert(x:%):InputForm == convert [convert('vector)@InputForm, convert(parts x)@InputForm] @ \section{package VECTOR2 VectorFunctions2} <<package VECTOR2 VectorFunctions2>>= )abbrev package VECTOR2 VectorFunctions2 ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package provides operations which all take as arguments ++ vectors of elements of some type \spad{A} and functions from \spad{A} to ++ another of type B. The operations all iterate over their vector argument ++ and either return a value of type B or a vector over B. VectorFunctions2(A, B): Exports == Implementation where A, B: Type VA ==> Vector A VB ==> Vector B O2 ==> FiniteLinearAggregateFunctions2(A, VA, B, VB) UB ==> Union(B,"failed") Exports ==> with scan : ((A, B) -> B, VA, B) -> VB ++ scan(func,vec,ident) creates a new vector whose elements are ++ the result of applying reduce to the binary function func, ++ increasing initial subsequences of the vector vec, ++ and the element ident. reduce : ((A, B) -> B, VA, B) -> B ++ reduce(func,vec,ident) combines the elements in vec using the ++ binary function func. Argument ident is returned if vec is empty. map : (A -> B, VA) -> VB ++ map(f, v) applies the function f to every element of the vector v ++ producing a new vector containing the values. map : (A -> UB, VA) -> Union(VB,"failed") ++ map(f, v) applies the function f to every element of the vector v ++ producing a new vector containing the values or \spad{"failed"}. Implementation ==> add scan(f, v, b) == scan(f, v, b)$O2 reduce(f, v, b) == reduce(f, v, b)$O2 map(f:(A->B), v:VA):VB == map(f, v)$O2 map(f:(A -> UB), a:VA):Union(VB,"failed") == res : List B := [] for u in entries(a) repeat r := f u r = "failed" => return "failed" res := [r::B,:res] vector reverse! res @ \section{category DIRPCAT DirectProductCategory} <<category DIRPCAT DirectProductCategory>>= )abbrev category DIRPCAT DirectProductCategory --% DirectProductCategory ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: DirectProduct ++ Also See: VectorCategory ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This category represents a finite cartesian product of a given type. ++ Many categorical properties are preserved under this construction. DirectProductCategory(dim:NonNegativeInteger, R:Type): Category == Join(IndexedAggregate(Integer, R), CoercibleTo Vector R) with finiteAggregate ++ attribute to indicate an aggregate of finite size directProduct: Vector R -> % ++ directProduct(v) converts the vector v to become ++ a direct product. Error: if the length of v is ++ different from dim. if R has SetCategory then FullyRetractableTo R if R has Ring then BiModule(R, R) DifferentialExtension R FullyLinearlyExplicitRingOver R unitVector: PositiveInteger -> % ++ unitVector(n) produces a vector with 1 in position n and ++ zero elsewhere. dot: (%, %) -> R ++ dot(x,y) computes the inner product of the vectors x and y. if R has AbelianSemiGroup then AbelianSemiGroup if R has CancellationAbelianMonoid then CancellationAbelianMonoid if R has Monoid then Monoid * : (R, %) -> % ++ r * y multiplies the element r times each component of the ++ vector y. * : (%, R) -> % ++ y * r multiplies each component of the vector y by the element r. if R has Finite then Finite if R has CommutativeRing then Algebra R CommutativeRing if R has unitsKnown then unitsKnown if R has OrderedRing then OrderedRing if R has OrderedAbelianMonoidSup then OrderedAbelianMonoidSup if R has Field then VectorSpace R add if R has Ring then equation2R: Vector % -> Matrix R coerce(n:Integer):% == n::R::% characteristic == characteristic$R differentiate(z:%, d:R -> R) == map(d, z) equation2R v == ans:Matrix(R) := new(dim, #v, 0) for i in minRowIndex ans .. maxRowIndex ans repeat for j in minColIndex ans .. maxColIndex ans repeat qsetelt!(ans, i, j, qelt(qelt(v, j), i)) ans reducedSystem(m:Matrix %):Matrix(R) == empty? m => new(0, 0, 0) reduce(vertConcat, [equation2R row(m, i) for i in minRowIndex m .. maxRowIndex m])$List(Matrix R) reducedSystem(m:Matrix %, v:Vector %): Record(mat:Matrix R, vec:Vector R) == vh:Vector(R) := empty? v => empty() rh := reducedSystem(v::Matrix %)@Matrix(R) column(rh, minColIndex rh) [reducedSystem(m)@Matrix(R), vh] if R has Finite then size == size()$R ** dim if R has Field then x / b == x * inv b dimension() == dim::CardinalNumber @ \section{domain DIRPROD DirectProduct} <<domain DIRPROD DirectProduct>>= )abbrev domain DIRPROD DirectProduct ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: Vector, IndexedVector ++ Also See: OrderedDirectProduct ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This type represents the finite direct or cartesian product of an ++ underlying component type. This contrasts with simple vectors in that ++ the members can be viewed as having constant length. Thus many ++ categorical properties can by lifted from the underlying component type. ++ Component extraction operations are provided but no updating operations. ++ Thus new direct product elements can either be created by converting ++ vector elements using the \spadfun{directProduct} function ++ or by taking appropriate linear combinations of basis vectors provided ++ by the \spad{unitVector} operation. DirectProduct(dim:NonNegativeInteger, R:Type): DirectProductCategory(dim, R) == Vector R add Rep := Vector R coerce(z:%):Vector(R) == copy(z)$Rep pretend Vector(R) coerce(r:R):% == new(dim, r)$Rep parts x == VEC2LIST(x)$Lisp directProduct z == size?(z, dim) => copy(z)$Rep error "Not of the correct length" if R has SetCategory then same?: % -> Boolean same? z == every?(#1 = z(minIndex z), z) x = y == and/[qelt(x,i)$Rep = qelt(y,i)$Rep for i in 1..dim] retract(z:%):R == same? z => z(minIndex z) error "Not retractable" retractIfCan(z:%):Union(R, "failed") == same? z => z(minIndex z) "failed" if R has AbelianSemiGroup then u:% + v:% == map(_+ , u, v)$Rep if R has AbelianMonoid then 0 == zero(dim)$Vector(R) pretend % if R has Monoid then 1 == new(dim, 1)$Vector(R) pretend % u:% * r:R == map(#1 * r, u) r:R * u:% == map(r * #1, u) x:% * y:% == [x.i * y.i for i in 1..dim]$Vector(R) pretend % if R has CancellationAbelianMonoid then subtractIfCan(u:%, v:%):Union(%,"failed") == w := new(dim,0)$Vector(R) for i in 1..dim repeat (c := subtractIfCan(qelt(u, i)$Rep, qelt(v,i)$Rep)) case "failed" => return "failed" qsetelt!(w, i, c::R)$Rep w pretend % if R has Ring then u:% * v:% == map(_* , u, v)$Rep recip z == w := new(dim,0)$Vector(R) for i in minIndex w .. maxIndex w repeat (u := recip qelt(z, i)) case "failed" => return "failed" qsetelt!(w, i, u::R) w pretend % unitVector i == v:= new(dim,0)$Vector(R) v.i := 1 v pretend % if R has OrderedSet then x < y == for i in 1..dim repeat qelt(x,i) < qelt(y,i) => return true qelt(x,i) > qelt(y,i) => return false false if R has OrderedAbelianMonoidSup then sup(x, y) == map(sup, x, y) @ \section{package DIRPROD2 DirectProductFunctions2} <<package DIRPROD2 DirectProductFunctions2>>= )abbrev package DIRPROD2 DirectProductFunctions2 ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package provides operations which all take as arguments ++ direct products of elements of some type \spad{A} and functions from \spad{A} to another ++ type B. The operations all iterate over their vector argument ++ and either return a value of type B or a direct product over B. DirectProductFunctions2(dim, A, B): Exports == Implementation where dim : NonNegativeInteger A, B: Type DA ==> DirectProduct(dim, A) DB ==> DirectProduct(dim, B) VA ==> Vector A VB ==> Vector B O2 ==> FiniteLinearAggregateFunctions2(A, VA, B, VB) Exports ==> with scan : ((A, B) -> B, DA, B) -> DB ++ scan(func,vec,ident) creates a new vector whose elements are ++ the result of applying reduce to the binary function func, ++ increasing initial subsequences of the vector vec, ++ and the element ident. reduce : ((A, B) -> B, DA, B) -> B ++ reduce(func,vec,ident) combines the elements in vec using the ++ binary function func. Argument ident is returned if the vector is empty. map : (A -> B, DA) -> DB ++ map(f, v) applies the function f to every element of the vector v ++ producing a new vector containing the values. Implementation ==> add import FiniteLinearAggregateFunctions2(A, VA, B, VB) map(f, v) == directProduct map(f, v::VA) scan(f, v, b) == directProduct scan(f, v::VA, b) reduce(f, v, b) == reduce(f, v::VA, b) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2009, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category VECTCAT VectorCategory>> <<domain IVECTOR IndexedVector>> <<domain VECTOR Vector>> <<package VECTOR2 VectorFunctions2>> <<category DIRPCAT DirectProductCategory>> <<domain DIRPROD DirectProduct>> <<package DIRPROD2 DirectProductFunctions2>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}