\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra updecomp.spad} \author{Frederic Lehobey} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package UPDECOMP UnivariatePolynomialDecompositionPackage} <<package UPDECOMP UnivariatePolynomialDecompositionPackage>>= )abbrev package UPDECOMP UnivariatePolynomialDecompositionPackage ++ Author: Frederic Lehobey ++ Date Created: 17 June 1996 ++ Date Last Updated: 4 June 1997 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keyword: ++ Exemples: ++ References: ++ [1] Peter Henrici, Automatic Computations with Power Series, ++ Journal of the Association for Computing Machinery, Volume 3, No. 1, ++ January 1956, 10-15 ++ [2] Dexter Kozen and Susan Landau, Polynomial Decomposition ++ Algorithms, Journal of Symbolic Computation (1989) 7, 445-456 -- Decomposition would be speeded up (O(n log n) instead of O(n^2)) by -- implementing the algorithm described in [3] based on [4] and [5]. ++ [3] Joachim von zur Gathen, Functional Decomposition Polynomials: ++ the Tame Case, Journal of Symbolic Computation (1990) 9, 281-299 ++ [4] R. P. Brent and H. T. Kung, Fast Algorithms for Manipulating ++ Formal Power Series, Journal of the Association for Computing ++ Machinery, Vol. 25, No. 4, October 1978, 581-595 ++ [5] R. P. Brent, Multiple-Precision Zero-Finding Methods and the ++ Complexity of Elementary Function Evaluation, Analytic ++ Computational Complexity, J. F. Traub, Ed., Academic Press, ++ New York 1975, 151-176 ++ Description: UnivariatePolynomialDecompositionPackage implements ++ functional decomposition of univariate polynomial with coefficients ++ in an \spad{IntegralDomain} of \spad{CharacteristicZero}. UnivariatePolynomialDecompositionPackage(R,UP): Exports == Implementation where R : Join(IntegralDomain,CharacteristicZero) UP : UnivariatePolynomialCategory(R) N ==> NonNegativeInteger LR ==> Record(left: UP, right: UP) QR ==> Record(quotient: UP, remainder: UP) Exports ==> with monicRightFactorIfCan: (UP,N) -> Union(UP,"failed") ++ monicRightFactorIfCan(f,d) returns a candidate to be the ++ monic right factor (h in f = g o h) of degree d of a ++ functional decomposition of the polynomial f or ++ \spad{"failed"} if no such candidate. rightFactorIfCan: (UP,N,R) -> Union(UP,"failed") ++ rightFactorIfCan(f,d,c) returns a candidate to be the ++ right factor (h in f = g o h) of degree d with leading ++ coefficient c of a functional decomposition of the ++ polynomial f or \spad{"failed"} if no such candidate. leftFactorIfCan: (UP,UP) -> Union(UP,"failed") ++ leftFactorIfCan(f,h) returns the left factor (g in f = g o h) ++ of the functional decomposition of the polynomial f with ++ given h or \spad{"failed"} if g does not exist. monicDecomposeIfCan: UP -> Union(LR,"failed") ++ monicDecomposeIfCan(f) returns a functional decomposition ++ of the monic polynomial f of "failed" if it has not found any. monicCompleteDecompose: UP -> List UP ++ monicCompleteDecompose(f) returns a list of factors of f for ++ the functional decomposition ([ f1, ..., fn ] means ++ f = f1 o ... o fn). Implementation ==> add rightFactorIfCan(p,dq,lcq) == dp := degree p zero? lcq => error "rightFactorIfCan: leading coefficient may not be zero" (zero? dp) or (zero? dq) => "failed" nc := dp exquo dq nc case "failed" => "failed" n := nc::N s := subtractIfCan(dq,1)::N lcp := leadingCoefficient p q: UP := monomial(lcq,dq) k: N for k in 1..s repeat c: R := 0 i: N for i in 0..subtractIfCan(k,1)::N repeat c := c+(k::R-(n::R+1)*(i::R))* coefficient(q,subtractIfCan(dq,i)::N)* coefficient(p,subtractIfCan(dp+i,k)::N) cquo := c exquo ((k*n)::R*lcp) cquo case "failed" => return "failed" q := q+monomial(cquo::R,subtractIfCan(dq,k)::N) q monicRightFactorIfCan(p,dq) == rightFactorIfCan(p,dq,1$R) import UnivariatePolynomialDivisionPackage(R,UP) leftFactorIfCan(f,h) == g: UP := 0 zero? degree h => "failed" for i in 0.. while not zero? f repeat qrf := divideIfCan(f,h) qrf case "failed" => return "failed" qr := qrf :: QR r := qr.remainder not ground? r => return "failed" g := g+monomial(ground(r),i) f := qr.quotient g monicDecomposeIfCan f == df := degree f zero? df => "failed" for dh in 2..subtractIfCan(df,1)::N | zero?(df rem dh) repeat h := monicRightFactorIfCan(f,dh) h case UP => g := leftFactorIfCan(f,h::UP) g case UP => return [g::UP,h::UP] "failed" monicCompleteDecompose f == cf := monicDecomposeIfCan f cf case "failed" => [ f ] lr := cf :: LR append(monicCompleteDecompose lr.left,[lr.right]) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package UPDECOMP UnivariatePolynomialDecompositionPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}