\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra unifact.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package UNIFACT UnivariateFactorize}
<<package UNIFACT UnivariateFactorize>>=
)abbrev package UNIFACT UnivariateFactorize
++ Factorisation of univariate polynomials  with integer coefficients
++ Author: Patrizia Gianni
++ Date Created: ???
++ Date Last Updated: December 1993
++ Description:
++ Package for the factorization of univariate polynomials with integer
++ coefficients. The factorization is done by "lifting" (HENSEL) the
++ factorization over a finite field.
UnivariateFactorize(ZP) : public == private where
  Z    ==>  Integer
  PI   ==>  PositiveInteger
  NNI  ==>  NonNegativeInteger
  SUPZ ==>  SparseUnivariatePolynomial Z

  ZP : UnivariatePolynomialCategory Z

  FR        ==>  Factored ZP
  fUnion    ==>  Union("nil", "sqfr", "irred", "prime")
  FFE       ==>  Record(flg:fUnion, fctr:ZP, xpnt:Z)
  ParFact   ==>  Record(irr: ZP,pow: Z)
  FinalFact ==>  Record(contp: Z,factors:List(ParFact))


  public == with
     factor            :           ZP              -> FR
       ++ factor(m) returns the factorization of m
     factorSquareFree  :           ZP              -> FR
       ++ factorSquareFree(m) returns the factorization of m square free
       ++ polynomial
     henselFact        :      (ZP,Boolean)         -> FinalFact
       ++ henselFact(m,flag) returns the factorization of m,
       ++ FinalFact is a Record s.t. FinalFact.contp=content m,
       ++ FinalFact.factors=List of irreducible factors
       ++ of m with exponent , if flag =true the polynomial is
       ++ assumed square free.

  private == add
                 --- local functions ---

     henselfact  :           ZP      -> List(ZP)
     quadratic   :           ZP      -> List(ZP)
     remp        :        (Z, PI)    -> Z
     negShiftz   :        (Z, PI)    -> Z
     negShiftp   :        (ZP,PI)    -> ZP
     bound       :           ZP      -> PI
     choose      :           ZP      -> FirstStep
     eisenstein  :           ZP      -> Boolean
     isPowerOf2  :           Z       -> Boolean
     subMinusX   :          SUPZ     -> ZP
     sqroot      :           Z       -> Z

                 ---   declarations  ---
     CYC       ==> CyclotomicPolynomialPackage()
     DDRecord  ==> Record(factor: ZP,degree: Z)
     DDList    ==> List DDRecord
     FirstStep ==> Record(prime:PI,factors:DDList)
     ContPrim  ==> Record(cont: Z,prim: ZP)

     import GeneralHenselPackage(Z,ZP)
     import ModularDistinctDegreeFactorizer ZP


     factor(m: ZP) ==
       flist := henselFact(m,false)
       ctp:=unitNormal flist.contp
       makeFR((ctp.unit)::ZP,cons(["nil",ctp.canonical::ZP,1$Z]$FFE,
                      [["prime",u.irr,u.pow]$FFE for u in flist.factors]))

     factorSquareFree(m: ZP) ==
       flist := henselFact(m,true)
       ctp:=unitNormal flist.contp
       makeFR((ctp.unit)::ZP,cons(["nil",ctp.canonical::ZP,1$Z]$FFE,
                     [["prime",u.irr,u.pow]$FFE for u in flist.factors]))


     -- Integer square root: returns 0 if t is non-positive
     sqroot(t: Z): Z  ==
      t <= 0 => 0
      s:Integer:=t::Integer
      s:=approxSqrt(s)$IntegerRoots(Integer)
      t:=s::Z
      t

     -- Eisenstein criterion: returns true if polynomial is
     -- irreducible. Result of false in inconclusive.
     eisenstein(m : ZP): Boolean ==
       -- calculate the content of the terms after the first
       c := content reductum m
       c = 0 => false
       c = 1 => false
       -- factor the content
       -- if there is a prime in the factorization that does not divide
       -- the leading term and appears to multiplicity 1, and the square
       -- of this does not divide the last coef, return true.
       -- Otherwise reurn false.
       lead := leadingCoefficient m
       trail := lead
       m := reductum m
       while m ^= 0 repeat
         trail := leadingCoefficient m
         m:= reductum m
       fc := factor(c) :: Factored(Z)
       for r in factors fc repeat
         if (r.exponent = 1) and (0 ^= (lead rem r.factor)) and
           (0 ^= (trail rem (r.factor ** 2))) then return true
       false

     negShiftz(n: Z,Modulus:PI): Z ==
       if n < 0 then n := n+Modulus
       n > (Modulus quo 2) => n-Modulus
       n

     negShiftp(pp: ZP,Modulus:PI): ZP ==
       map(negShiftz(#1,Modulus),pp)

     -- Choose the bound for the coefficients of factors
     bound(m: ZP):PI ==
       nm,nmq2,lcm,bin0,bin1:NNI
       cbound,j : PI
       k:NNI
       lcm := abs(leadingCoefficient m)::NNI
       nm := (degree m)::NNI
       nmq2:NNI := nm quo 2
       norm: Z := sqroot(+/[coefficient(m,k)**2 for k in 0..nm])
       if nmq2^=1 then nm := (nmq2-1):NNI
       else nm := nmq2
       bin0 := nm
       cbound := (bin0*norm+lcm)::PI
       for i in 2..(nm-1)::NNI repeat
         bin1 := bin0
         bin0 := (bin0*(nm+1-i):NNI) quo i
         j := (bin0*norm+bin1*lcm)::PI
         if cbound<j then cbound := j
       (2*cbound*lcm)::PI -- adjusted by lcm to prepare for exquo in ghensel

     remp(t: Z,q:PI): Z == ((t := t rem q)<0 => t+q ;t)

     numFactors(ddlist:DDList): Z ==
       ans: Z := 0
       for dd in ddlist repeat
         (d := degree(dd.factor)) = 0 => nil
         ans := ans + ((d pretend Z) exquo dd.degree):: Z
       ans

     -- select the prime,try up to 4 primes,
     -- choose the one yielding the fewest factors, but stopping if
     -- fewer than 9 factors
     choose(m: ZP):FirstStep ==
       qSave:PI := 1
       ddSave:DDList := []
       numberOfFactors: Z := 0
       lcm := leadingCoefficient m
       k: Z := 1
       ddRep := 5
       disc:ZP:=0
       q:PI:=2
       while k<ddRep repeat
         -- q must be a new prime number at each iteration
         q:=nextPrime(q)$IntegerPrimesPackage(Z) pretend PI
         (rr:=lcm rem q) = 0$Z => "next prime"
         disc:=gcd(m,differentiate m,q)
         (degree disc)^=0 => "next prime"
         k := k+1
         newdd := ddFact(m,q)
         ((n := numFactors(newdd)) < 9) =>
           ddSave := newdd
           qSave := q
           k := 5
         (numberOfFactors = 0) or (n < numberOfFactors) =>
           ddSave := newdd
           qSave := q
           numberOfFactors := n
       [qSave,ddSave]$FirstStep

     -- Find the factors of m,primitive, square-free, with lc positive
     -- and mindeg m = 0
     henselfact1(m: ZP):List(ZP) ==
      zero? degree m =>
--          one? m => []
          (m = 1) => []
          [m]
      selected := choose(m)
      (numFactors(selected.factors) = 1$Z) => [m]
      q := selected.prime
      fl := separateFactors(selected.factors,q)
      --choose the bound
      cbound := bound(m)
      completeHensel(m,fl,q,cbound)

     -- check for possible degree reduction
     -- could use polynomial decomposition ?
     henselfact(m: ZP):List ZP ==
      deggcd:=degree m
      mm:= m
      while not zero? mm repeat (deggcd:=gcd(deggcd, degree mm); mm:=reductum mm)
      deggcd>1 and deggcd<degree m =>
         faclist := henselfact1(divideExponents(m, deggcd)::ZP)
         "append"/[henselfact1 multiplyExponents(mm, deggcd) for mm in faclist]
      henselfact1 m

     quadratic(m: ZP):List(ZP) ==
       d,d2: Z
       d := coefficient(m,1)**2-4*coefficient(m,0)*coefficient(m,2)
       d2 := sqroot(d)
       (d-d2**2)^=0 => [m]
       alpha: Z := coefficient(m,1)+d2
       beta: Z := 2*coefficient(m,2)
       d := gcd(alpha,beta)
       if d ^=1 then
         alpha := alpha quo d
         beta := beta quo d
       m0: ZP := monomial(beta,1)+monomial(alpha,0)
       cons(m0,[(m exquo m0):: ZP])

     isPowerOf2(n : Z): Boolean ==
       n = 1 => true
       qr : Record(quotient: Z, remainder: Z) := divide(n,2)
       qr.remainder = 1 => false
       isPowerOf2 qr.quotient

     subMinusX(supPol : SUPZ): ZP ==
       minusX : SUPZ := monomial(-1,1)$SUPZ
       (elt(supPol,minusX)$SUPZ) : ZP

--   Factorize the polynomial m, test=true if m is known to be
--   square-free, false otherwise.
--   FinalFact.contp=content m, FinalFact.factors=List of irreducible
--   factors with exponent .
     henselFact(m: ZP,test:Boolean):FinalFact ==
      factorlist : List(ParFact) := []
      c : Z

      -- make m primitive
      c := content m
      m := (m exquo c)::ZP

      -- make the lc m positive
      if leadingCoefficient m < 0 then
        c := -c
        m := -m

      -- is x**d factor of m?
      if (d := minimumDegree m) >0 then
        m := (monicDivide(m,monomial(1,d))).quotient
        factorlist := [[monomial(1,1),d]$ParFact]

      d := degree m

      -- is m constant?
      d=0 => [c,factorlist]$FinalFact

      -- is m linear?
      d=1 => [c,cons([m,1]$ParFact,factorlist)]$FinalFact

      -- does m satisfy Eisenstein's criterion?
      eisenstein m => [c,cons([m,1]$ParFact,factorlist)]$FinalFact

      lcPol : ZP := leadingCoefficient(m) :: ZP

      -- is m cyclotomic (x**n - 1)?
      -lcPol = reductum(m) =>    -- if true, both will = 1
        for fac in
          (cyclotomicDecomposition(degree m)$CYC : List ZP) repeat
            factorlist := cons([fac,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact

      -- is m odd cyclotomic (x**(2*n+1) + 1)?
      odd?(d) and (lcPol = reductum(m)) =>
        for sfac in cyclotomicDecomposition(degree m)$CYC repeat
           fac:=subMinusX sfac
           if leadingCoefficient fac < 0 then fac := -fac
           factorlist := cons([fac,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact

      -- is the poly of the form x**n + 1 with n a power of 2?
      -- if so, then irreducible
      isPowerOf2(d) and (lcPol = reductum(m)) =>
        factorlist := cons([m,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact

      -- is m quadratic?
      d=2 =>
       lfq:List(ZP) := quadratic m
       #lfq=1 => [c,cons([lfq.first,1]$ParFact,factorlist)]$FinalFact
       (lf0,lf1) := (lfq.first,second lfq)
       if lf0=lf1 then factorlist := cons([lf0,2]$ParFact,factorlist)
       else factorlist := append([[v,1]$ParFact for v in lfq],factorlist)
       [c,factorlist]$FinalFact

      -- m is square-free
      test =>
        fln := henselfact(m)
        [c,append(factorlist,[[pf,1]$ParFact for pf in fln])]$FinalFact

      -- find the square-free decomposition of m
      irrFact := squareFree(m)
      llf := factors irrFact

      -- factorize the square-free primitive terms
      for l1 in llf repeat
        d1 := l1.exponent
        pol := l1.factor
        degree pol=1 => factorlist := cons([pol,d1]$ParFact,factorlist)
        degree pol=2 =>
          fln := quadratic(pol)
          factorlist := append([[pf,d1]$ParFact for pf in fln],factorlist)
        fln := henselfact(pol)
        factorlist := append([[pf,d1]$ParFact for pf in fln],factorlist)
      [c,factorlist]$FinalFact

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package UNIFACT UnivariateFactorize>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}