\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra trigcat.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category ELEMFUN ElementaryFunctionCategory}
<<category ELEMFUN ElementaryFunctionCategory>>=
)abbrev category ELEMFUN ElementaryFunctionCategory
++ Category for the elementary functions
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 14 May 1991
++ Description: Category for the elementary functions;
ElementaryFunctionCategory(): Category == with
    log : $ -> $       ++ log(x) returns the natural logarithm of x.
    exp : $ -> $       ++ exp(x) returns %e to the power x.
    **: ($, $) -> $  ++ x**y returns x to the power y.
 add
   if $ has Monoid then
     x ** y == exp(y * log x)

@
\section{category AHYP ArcHyperbolicFunctionCategory}
<<category AHYP ArcHyperbolicFunctionCategory>>=
)abbrev category AHYP ArcHyperbolicFunctionCategory
++ Category for the inverse hyperbolic trigonometric functions
++ Author: ???
++ Date Created: ???
++ Date Last Updated: 14 May 1991
++ Description:
++ Category for the inverse hyperbolic trigonometric functions;
ArcHyperbolicFunctionCategory(): Category == with
    acosh: $ -> $ ++ acosh(x) returns the hyperbolic arc-cosine of x.
    acoth: $ -> $ ++ acoth(x) returns the hyperbolic arc-cotangent of x.
    acsch: $ -> $ ++ acsch(x) returns the hyperbolic arc-cosecant of x.
    asech: $ -> $ ++ asech(x) returns the hyperbolic arc-secant of x.
    asinh: $ -> $ ++ asinh(x) returns the hyperbolic arc-sine of x.
    atanh: $ -> $ ++ atanh(x) returns the hyperbolic arc-tangent of x.

@
\section{category ATRIG ArcTrigonometricFunctionCategory}
The [[asec]] and [[acsc]] functions were modified to include an
intermediate test to check that the argument has a reciprocal values.
<<category ATRIG ArcTrigonometricFunctionCategory>>=
)abbrev category ATRIG ArcTrigonometricFunctionCategory
++ Category for the inverse trigonometric functions
++ Author: ???
++ Date Created: ???
++ Date Last Updated: 14 May 1991
++ Description: Category for the inverse trigonometric functions;
ArcTrigonometricFunctionCategory(): Category == with
    acos: $ -> $       ++ acos(x) returns the arc-cosine of x.
    acot: $ -> $       ++ acot(x) returns the arc-cotangent of x.
    acsc: $ -> $       ++ acsc(x) returns the arc-cosecant of x.
    asec: $ -> $       ++ asec(x) returns the arc-secant of x.
    asin: $ -> $       ++ asin(x) returns the arc-sine of x.
    atan: $ -> $       ++ atan(x) returns the arc-tangent of x.
 add
    if $ has Ring then
       asec(x) ==
         (a := recip x) case "failed" => error "asec: no reciprocal"
         acos(a::$)
       acsc(x) == 
         (a := recip x) case "failed" => error "acsc: no reciprocal"
         asin(a::$)

@
\section{category HYPCAT HyperbolicFunctionCategory}
The [[csch]] and [[sech]] functions were modified to include an
intermediate test to check that the argument has a reciprocal values.
<<category HYPCAT HyperbolicFunctionCategory>>=
)abbrev category HYPCAT HyperbolicFunctionCategory
++ Category for the hyperbolic trigonometric functions
++ Author: ???
++ Date Created: ???
++ Date Last Updated: 14 May 1991
++ Description: Category for the hyperbolic trigonometric functions;
HyperbolicFunctionCategory(): Category == with
    cosh: $ -> $       ++ cosh(x) returns the hyperbolic cosine of x.
    coth: $ -> $       ++ coth(x) returns the hyperbolic cotangent of x.
    csch: $ -> $       ++ csch(x) returns the hyperbolic cosecant of x.
    sech: $ -> $       ++ sech(x) returns the hyperbolic secant of x.
    sinh: $ -> $       ++ sinh(x) returns the hyperbolic sine of x.
    tanh: $ -> $       ++ tanh(x) returns the hyperbolic tangent of x.
 add
    if $ has Ring then
       csch x == 
         (a := recip(sinh x)) case "failed" => error "csch: no reciprocal"
         a::$
       sech x == 
         (a := recip(cosh x)) case "failed" => error "sech: no reciprocal"
         a::$
       tanh x == sinh x * sech x
       coth x == cosh x * csch x
       if $ has ElementaryFunctionCategory then
         cosh x ==
           e := exp x
           (e + recip(e)::$) * recip(2::$)::$
         sinh(x):$ ==
           e := exp x
           (e - recip(e)::$) * recip(2::$)::$

@
\section{category TRANFUN TranscendentalFunctionCategory}
The [[acsch]], [[asech]], and [[acoth]] functions were modified to
include an intermediate test to check that the argument has a
reciprocal values.
<<category TRANFUN TranscendentalFunctionCategory>>=
)abbrev category TRANFUN TranscendentalFunctionCategory
++ Category for the transcendental elementary functions
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 14 May 1991
++ Description: Category for the transcendental elementary functions;
TranscendentalFunctionCategory(): Category ==
    Join(TrigonometricFunctionCategory,ArcTrigonometricFunctionCategory,
         HyperbolicFunctionCategory,ArcHyperbolicFunctionCategory,
         ElementaryFunctionCategory) with
           pi : () -> $        ++ pi() returns the constant pi.
   add
     if $ has Ring then
       pi()   == 2*asin(1)
       acsch x == 
         (a := recip x) case "failed" => error "acsch: no reciprocal"
         asinh(a::$)
       asech x == 
         (a := recip x) case "failed" => error "asech: no reciprocal"
         acosh(a::$)
       acoth x == 
         (a := recip x) case "failed" => error "acoth: no reciprocal"
         atanh(a::$)
     if $ has Field and $ has sqrt: $ -> $ then
       asin x == atan(x/sqrt(1-x**2))
       acos x == pi()/2::$ - asin x
       acot x == pi()/2::$ - atan x
       asinh x == log(x + sqrt(x**2 + 1))
       acosh x == 2*log(sqrt((x+1)/2::$) + sqrt((x-1)/2::$))
       atanh x == (log(1+x)-log(1-x))/2::$

@
\section{category TRIGCAT TrigonometricFunctionCategory}
The [[csc]] and [[sec]] functions were modified to include an
intermediate test to check that the argument has a reciprocal values.
<<category TRIGCAT TrigonometricFunctionCategory>>=
)abbrev category TRIGCAT TrigonometricFunctionCategory
++ Category for the trigonometric functions
++ Author: ???
++ Date Created: ???
++ Date Last Updated: 14 May 1991
++ Description: Category for the trigonometric functions;
TrigonometricFunctionCategory(): Category == with
    cos: $ -> $        ++ cos(x) returns the cosine of x.
    cot: $ -> $        ++ cot(x) returns the cotangent of x.
    csc: $ -> $        ++ csc(x) returns the cosecant of x.
    sec: $ -> $        ++ sec(x) returns the secant of x.
    sin: $ -> $        ++ sin(x) returns the sine of x.
    tan: $ -> $        ++ tan(x) returns the tangent of x.
 add
    if $ has Ring then
       csc x == 
         (a := recip(sin x)) case "failed" => error "csc: no reciprocal"
         a::$
       sec x == 
         (a := recip(cos x)) case "failed" => error "sec: no reciprocal"
         a::$
       tan x == sin x * sec x
       cot x == cos x * csc x

@
\section{category PRIMCAT PrimitiveFunctionCategory}
<<category PRIMCAT PrimitiveFunctionCategory>>=
)abbrev category PRIMCAT PrimitiveFunctionCategory
++ Category for the integral functions
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 14 May 1991
++ Description: Category for the functions defined by integrals;
PrimitiveFunctionCategory(): Category == with
    integral: ($, Symbol) -> $
      ++ integral(f, x) returns the formal integral of f dx.
    integral: ($, SegmentBinding $) -> $
      ++ integral(f, x = a..b) returns the formal definite integral
      ++ of f dx for x between \spad{a} and b.

@
\section{category LFCAT LiouvillianFunctionCategory}
<<category LFCAT LiouvillianFunctionCategory>>=
)abbrev category LFCAT LiouvillianFunctionCategory
++ Category for the transcendental Liouvillian functions
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 14 May 1991
++ Description: Category for the transcendental Liouvillian functions;
LiouvillianFunctionCategory(): Category ==
  Join(PrimitiveFunctionCategory, TranscendentalFunctionCategory) with
    Ei      : $  -> $
      ++ Ei(x) returns the exponential integral of x, i.e.
      ++ the integral of \spad{exp(x)/x dx}.
    Si      : $  -> $
      ++ Si(x) returns the sine integral of x, i.e.
      ++ the integral of \spad{sin(x) / x dx}.
    Ci      : $  -> $
      ++ Ci(x) returns the cosine integral of x, i.e.
      ++ the integral of \spad{cos(x) / x dx}.
    li      : $  -> $
      ++ li(x) returns the logarithmic integral of x, i.e.
      ++ the integral of \spad{dx / log(x)}.
    dilog   : $  -> $
      ++ dilog(x) returns the dilogarithm of x, i.e.
      ++ the integral of \spad{log(x) / (1 - x) dx}.
    erf     : $  -> $
      ++ erf(x) returns the error function of x, i.e.
      ++ \spad{2 / sqrt(%pi)} times the integral of \spad{exp(-x**2) dx}.

@
\section{category CFCAT CombinatorialFunctionCategory}
<<category CFCAT CombinatorialFunctionCategory>>=
)abbrev category CFCAT CombinatorialFunctionCategory
++ Category for the usual combinatorial functions
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 14 May 1991
++ Description: Category for the usual combinatorial functions;
CombinatorialFunctionCategory(): Category == with
    binomial   : ($, $) -> $
      ++ binomial(n,r) returns the \spad{(n,r)} binomial coefficient
      ++ (often denoted in the literature by \spad{C(n,r)}).
      ++ Note: \spad{C(n,r) = n!/(r!(n-r)!)} where \spad{n >= r >= 0}.
    factorial  : $ -> $
      ++ factorial(n) computes the factorial of n
      ++ (denoted in the literature by \spad{n!})
      ++ Note: \spad{n! = n (n-1)! when n > 0}; also, \spad{0! = 1}.
    permutation: ($, $) -> $
      ++ permutation(n, m) returns the number of
      ++ permutations of n objects taken m at a time.
      ++ Note: \spad{permutation(n,m) = n!/(n-m)!}.

@
\section{category SPFCAT SpecialFunctionCategory}
<<category SPFCAT SpecialFunctionCategory>>=
)abbrev category SPFCAT SpecialFunctionCategory
++ Category for the other special functions
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 11 May 1993
++ Description: Category for the other special functions;
SpecialFunctionCategory(): Category == with
    abs :      $ -> $
        ++ abs(x) returns the absolute value of x.
    Gamma:     $ -> $
        ++ Gamma(x) is the Euler Gamma function.
    Beta:      ($,$)->$
        ++ Beta(x,y) is \spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.
    digamma:   $ -> $
        ++ digamma(x) is the logarithmic derivative of \spad{Gamma(x)}
        ++ (often written \spad{psi(x)} in the literature).
    polygamma: ($, $) -> $
        ++ polygamma(k,x) is the \spad{k-th} derivative of \spad{digamma(x)},
        ++ (often written \spad{psi(k,x)} in the literature).
    Gamma:     ($, $) -> $
        ++ Gamma(a,x) is the incomplete Gamma function.
    besselJ:   ($,$) -> $
        ++ besselJ(v,z) is the Bessel function of the first kind.
    besselY:   ($,$) -> $
        ++ besselY(v,z) is the Bessel function of the second kind.
    besselI:   ($,$) -> $
        ++ besselI(v,z) is the modified Bessel function of the first kind.
    besselK:   ($,$) -> $
        ++ besselK(v,z) is the modified Bessel function of the second kind.
    airyAi:    $ -> $
        ++ airyAi(x) is the Airy function \spad{Ai(x)}.
    airyBi:    $ -> $
        ++ airyBi(x) is the Airy function \spad{Bi(x)}.

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<category ELEMFUN ElementaryFunctionCategory>>
<<category TRIGCAT TrigonometricFunctionCategory>>
<<category ATRIG ArcTrigonometricFunctionCategory>>
<<category HYPCAT HyperbolicFunctionCategory>>
<<category AHYP ArcHyperbolicFunctionCategory>>
<<category TRANFUN TranscendentalFunctionCategory>>
<<category PRIMCAT PrimitiveFunctionCategory>>
<<category LFCAT LiouvillianFunctionCategory>>
<<category CFCAT CombinatorialFunctionCategory>>
<<category SPFCAT SpecialFunctionCategory>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}