\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra tableau.spad}
\author{William H. Burge}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain TABLEAU Tableau}
<<domain TABLEAU Tableau>>=
)abbrev domain TABLEAU Tableau
++ Author: William H. Burge
++ Date Created: 1987
++ Date Last Updated: 23 Sept 1991
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: Young tableau
++ References:
++ Description:
++ The tableau domain is for printing Young tableaux, and
++ coercions to and from List List S where S is a set.
Tableau(S:SetCategory):Exports == Implementation where
  ++ The tableau domain is for printing Young tableaux, and
  ++ coercions to and from List List S where S is a set.
  L   ==> List
  I   ==> Integer
  NNI ==> NonNegativeInteger
  OUT ==> OutputForm
  V   ==> Vector
  fm==>formMatrix$PrintableForm()
  Exports ==>  with
    tableau : L L S -> %
      ++ tableau(ll) converts a list of lists ll to a tableau.
    listOfLists : % -> L L S
      ++ listOfLists t converts a tableau t to a list of lists.
    coerce : % -> OUT
      ++ coerce(t) converts a tableau t to an output form.
  Implementation ==> add

    Rep := L L S

    tableau(lls:(L L S)) == lls pretend %
    listOfLists(x:%):(L L S) == x pretend (L L S)
    makeupv : (NNI,L S) -> L OUT
    makeupv(n,ls)==
        v:=new(n,message " ")$(List OUT)
        for i in 1..#ls for s in  ls repeat v.i:=box(s::OUT)
        v
    maketab : L L S -> OUT
    maketab lls ==
      ll :  L OUT :=
        empty? lls => [[empty()]]
        sz:NNI:=# first lls
        [blankSeparate makeupv(sz,i) for i in lls]
      pile ll

    coerce(x:%):OUT == maketab listOfLists x

@
\section{package TABLBUMP TableauxBumpers}
<<package TABLBUMP TableauxBumpers>>=
)abbrev package TABLBUMP TableauxBumpers
++ Author: William H. Burge
++ Date Created: 1987
++ Date Last Updated: 23 Sept 1991
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: Young tableau
++ References:
++ Description:
++ TableauBumpers implements the Schenstead-Knuth
++ correspondence between sequences and pairs of Young tableaux.
++ The 2 Young tableaux are represented as a single tableau with
++ pairs as components.
TableauxBumpers(S:OrderedSet):T==C where
     L==>List
     ST==>Stream
     B==>Boolean
     ROW==>Record(fs:B,sd:L S,td:L L S)
     RC==>Record(f1:L S,f2:L L L S,f3:L L S,f4:L L L S)
     PAIR==>L S
     T== with
       bumprow:((S,S)->B,PAIR,L PAIR)->ROW
         ++ bumprow(cf,pr,r) is an auxiliary function which
         ++ bumps a row r with a pair pr
         ++ using comparison function cf, and returns a record
       bumptab:((S,S)->B,PAIR,L L PAIR)->L L PAIR
         ++ bumptab(cf,pr,t) bumps a tableau t with a pair pr
         ++ using comparison function cf, returning a new tableau
       bumptab1:(PAIR,L L PAIR)->L L PAIR
         ++ bumptab1(pr,t) bumps a tableau t with a pair pr
         ++ using comparison function \spadfun{<},
         ++ returning a new tableau
       untab: (L PAIR,L L PAIR)->L PAIR
         ++ untab(lp,llp) is an auxiliary function
         ++ which unbumps a tableau llp,
         ++ using lp to accumulate pairs
       bat1:L L PAIR->L PAIR
         ++ bat1(llp) unbumps a tableau llp.
         ++ Operation bat1 is the inverse of tab1.
       bat:Tableau(L S)->L L S
         ++ bat(ls) unbumps a tableau ls
       tab1:L PAIR->L L PAIR
         ++ tab1(lp) creates a tableau from a list of pairs lp
       tab:L S->Tableau(L S)
         ++ tab(ls) creates a tableau from ls by first creating
         ++ a list of pairs using \spadfunFrom{slex}{TableauBumpers},
         ++ then creating a tableau using \spadfunFrom{tab1}{TableauBumpers}.
       lex:L PAIR->L PAIR
         ++ lex(ls) sorts a list of pairs to lexicographic order
       slex:L S->L PAIR
         ++ slex(ls) sorts the argument sequence ls, then
         ++ zips (see \spadfunFrom{map}{ListFunctions3}) the
         ++ original argument sequence with the sorted result to
         ++ a list of pairs
       inverse:L S->L S
         ++ inverse(ls) forms the inverse of a sequence ls
       maxrow:(PAIR,L L PAIR,L PAIR,L L PAIR,L L PAIR,L L PAIR)->RC
         ++ maxrow(a,b,c,d,e) is an auxiliary function for mr
       mr:L L PAIR->RC
         ++ mr(t) is an auxiliary function which
         ++ finds the position of the maximum element of a tableau t
         ++ which is in the lowest row, producing a record of results
     C== add
       cf:(S,S)->B
       bumprow(cf,x:(PAIR),lls:(L PAIR))==
         if null lls
         then [false,x,[x]]$ROW
         else (y:(PAIR):=first lls;
               if cf(x.2,y.2)
               then [true,[x.1,y.2],cons([y.1,x.2],rest lls)]$ROW
               else (rw:ROW:=bumprow(cf,x,rest lls);
                       [rw.fs,rw.sd,cons(first lls,rw.td)]$ROW ))

       bumptab(cf,x:(PAIR),llls:(L L PAIR))==
           if null llls
           then [[x]]
           else (rw:ROW:= bumprow(cf,x,first llls);
                 if rw.fs
                 then cons(rw.td, bumptab(cf,rw.sd,rest llls))
                 else cons(rw.td,rest llls))

       bumptab1(x,llls)==bumptab(#1<#2,x,llls)

       rd==> reduce$StreamFunctions2(PAIR,L L PAIR)
       tab1(lls:(L PAIR))== rd([],bumptab1,lls::(ST PAIR))

       srt==>sort$(PAIR)
       lexorder:(PAIR,PAIR)->B
       lexorder(p1,p2)==if p1.1=p2.1 then p1.2<p2.2 else p1.1<p2.1
       lex lp==(sort$(L PAIR))(lexorder(#1,#2),lp)
       slex ls==lex([[i,j] for i in srt(#1<#2,ls) for j in ls])
       inverse ls==[lss.2 for lss in
                    lex([[j,i] for i in srt(#1<#2,ls) for j in ls])]

       tab(ls:(PAIR))==(tableau tab1 slex ls )

       maxrow(n,a,b,c,d,llls)==
        if null llls or null(first llls)
        then [n,a,b,c]$RC
        else (fst:=first first llls;rst:=rest first llls;
              if fst.1>n.1
              then maxrow(fst,d,rst,rest llls,cons(first llls,d),rest llls)
              else maxrow(n,a,b,c,cons(first llls,d),rest llls))

       mr llls==maxrow(first first llls,[],rest first llls,rest llls,
                                                               [],llls)

       untab(lp, llls)==
         if null llls
         then lp
         else (rc:RC:=mr llls;
               rv:=reverse (bumptab(#2<#1,rc.f1,rc.f2));
               untab(cons(first first rv,lp)
                     ,append(rest rv,
                                         if null rc.f3
                                         then []
                                         else cons(rc.f3,rc.f4))))

       bat1 llls==untab([],[reverse lls for lls in llls])
       bat tb==bat1(listOfLists tb)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain TABLEAU Tableau>>
<<package TABLBUMP TableauxBumpers>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}