\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra suts.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain SUTS SparseUnivariateTaylorSeries} <<domain SUTS SparseUnivariateTaylorSeries>>= )abbrev domain SUTS SparseUnivariateTaylorSeries ++ Author: Clifton J. Williamson ++ Date Created: 16 February 1990 ++ Date Last Updated: June 18, 2010 ++ Basic Operations: ++ Related Domains: InnerSparseUnivariatePowerSeries, ++ SparseUnivariateLaurentSeries, SparseUnivariatePuiseuxSeries ++ Also See: ++ AMS Classifications: ++ Keywords: Taylor series, sparse power series ++ Examples: ++ References: ++ Description: Sparse Taylor series in one variable ++ \spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor ++ series in one variable with coefficients in an arbitrary ring. The ++ parameters of the type specify the coefficient ring, the power series ++ variable, and the center of the power series expansion. For example, ++ \spadtype{SparseUnivariateTaylorSeries}(Integer,x,3) represents Taylor ++ series in \spad{(x - 3)} with \spadtype{Integer} coefficients. SparseUnivariateTaylorSeries(Coef,var,cen): Exports == Implementation where Coef : Ring var : Symbol cen : Coef COM ==> OrderedCompletion Integer I ==> Integer L ==> List NNI ==> NonNegativeInteger OUT ==> OutputForm P ==> Polynomial Coef REF ==> Reference OrderedCompletion Integer RN ==> Fraction Integer Term ==> Record(k:Integer,c:Coef) SG ==> String ST ==> Stream Term UP ==> UnivariatePolynomial(var,Coef) Exports ==> Join(UnivariateTaylorSeriesCategory(Coef),_ PartialDifferentialDomain(%,Variable var)) with coerce: UP -> % ++\spad{coerce(p)} converts a univariate polynomial p in the variable ++\spad{var} to a univariate Taylor series in \spad{var}. univariatePolynomial: (%,NNI) -> UP ++\spad{univariatePolynomial(f,k)} returns a univariate polynomial ++ consisting of the sum of all terms of f of degree \spad{<= k}. coerce: Variable(var) -> % ++\spad{coerce(var)} converts the series variable \spad{var} into a ++ Taylor series. if Coef has Algebra Fraction Integer then integrate: (%,Variable(var)) -> % ++ \spad{integrate(f(x),x)} returns an anti-derivative of the power ++ series \spad{f(x)} with constant coefficient 0. ++ We may integrate a series when we can divide coefficients ++ by integers. Implementation ==> InnerSparseUnivariatePowerSeries(Coef) add import REF Rep := InnerSparseUnivariatePowerSeries(Coef) makeTerm: (Integer,Coef) -> Term makeTerm(exp,coef) == [exp,coef] getCoef: Term -> Coef getCoef term == term.c getExpon: Term -> Integer getExpon term == term.k monomial(coef,expon) == monomial(coef,expon)$Rep extend(x,n) == extend(x,n)$Rep 0 == monomial(0,0)$Rep 1 == monomial(1,0)$Rep recip uts == iExquo(1,uts,true) if Coef has IntegralDomain then uts1 exquo uts2 == iExquo(uts1,uts2,true) quoByVar uts == taylorQuoByVar(uts)$Rep differentiate(x:%,v:Variable(var)) == differentiate x --% Creation and destruction of series coerce(v: Variable(var)) == zero? cen => monomial(1,1) monomial(1,1) + monomial(cen,0) coerce(p:UP) == zero? p => 0 if not zero? cen then p := p(monomial(1,1)$UP + monomial(cen,0)$UP) st : ST := empty() while not zero? p repeat st := concat(makeTerm(degree p,leadingCoefficient p),st) p := reductum p makeSeries(ref plusInfinity(),st) univariatePolynomial(x,n) == extend(x,n); st := getStream x ans : UP := 0; oldDeg : I := 0; mon := monomial(1,1)$UP - monomial(center x,0)$UP; monPow : UP := 1 while explicitEntries? st repeat (xExpon := getExpon(xTerm := frst st)) > n => return ans pow := (xExpon - oldDeg) :: NNI; oldDeg := xExpon monPow := monPow * mon ** pow ans := ans + getCoef(xTerm) * monPow st := rst st ans polynomial(x,n) == extend(x,n); st := getStream x ans : P := 0; oldDeg : I := 0; mon := (var :: P) - (center(x) :: P); monPow : P := 1 while explicitEntries? st repeat (xExpon := getExpon(xTerm := frst st)) > n => return ans pow := (xExpon - oldDeg) :: NNI; oldDeg := xExpon monPow := monPow * mon ** pow ans := ans + getCoef(xTerm) * monPow st := rst st ans polynomial(x,n1,n2) == polynomial(truncate(x,n1,n2),n2) truncate(x,n) == truncate(x,n)$Rep truncate(x,n1,n2) == truncate(x,n1,n2)$Rep iCoefficients: (ST,REF,I) -> Stream Coef iCoefficients(x,refer,n) == delay -- when this function is called, we are computing the nth order -- coefficient of the series explicitlyEmpty? x => empty() -- if terms up to order n have not been computed, -- apply lazy evaluation nn := n :: COM while (nx := deref refer) < nn repeat lazyEvaluate x -- must have nx >= n explicitEntries? x => xCoef := getCoef(xTerm := frst x); xExpon := getExpon xTerm xExpon = n => concat(xCoef,iCoefficients(rst x,refer,n + 1)) -- must have nx > n concat(0,iCoefficients(x,refer,n + 1)) concat(0,iCoefficients(x,refer,n + 1)) coefficients uts == refer := getRef uts; x := getStream uts iCoefficients(x,refer,0) terms uts == terms(uts)$Rep pretend Stream Record(k:NNI,c:Coef) iSeries: (Stream Coef,I,REF) -> ST iSeries(st,n,refer) == delay -- when this function is called, we are creating the nth order -- term of a series empty? st => (setref(refer,plusInfinity()); empty()) setref(refer,n :: COM) zero? (coef := frst st) => iSeries(rst st,n + 1,refer) concat(makeTerm(n,coef),iSeries(rst st,n + 1,refer)) series(st:Stream Coef) == refer := ref(-1) makeSeries(refer,iSeries(st,0,refer)) nniToI: Stream Record(k:NNI,c:Coef) -> ST nniToI st == empty? st => empty() term : Term := [(frst st).k,(frst st).c] concat(term,nniToI rst st) series(st:Stream Record(k:NNI,c:Coef)) == series(nniToI st)$Rep --% Values variable x == var center x == cen coefficient(x,n) == coefficient(x,n)$Rep elt(x:%,n:NonNegativeInteger) == coefficient(x,n) pole? x == false order x == (order(x)$Rep) :: NNI order(x,n) == (order(x,n)$Rep) :: NNI --% Composition elt(uts1:%,uts2:%) == zero? uts2 => coefficient(uts1,0) :: % not zero? coefficient(uts2,0) => error "elt: second argument must have positive order" iCompose(uts1,uts2) --% Integration if Coef has Algebra Fraction Integer then integrate(x:%,v:Variable(var)) == integrate x --% Transcendental functions (uts1:%) ** (uts2:%) == exp(log(uts1) * uts2) if Coef has CommutativeRing then (uts:%) ** (r:RN) == cRationalPower(uts,r) exp uts == cExp uts log uts == cLog uts sin uts == cSin uts cos uts == cCos uts tan uts == cTan uts cot uts == cCot uts sec uts == cSec uts csc uts == cCsc uts asin uts == cAsin uts acos uts == cAcos uts atan uts == cAtan uts acot uts == cAcot uts asec uts == cAsec uts acsc uts == cAcsc uts sinh uts == cSinh uts cosh uts == cCosh uts tanh uts == cTanh uts coth uts == cCoth uts sech uts == cSech uts csch uts == cCsch uts asinh uts == cAsinh uts acosh uts == cAcosh uts atanh uts == cAtanh uts acoth uts == cAcoth uts asech uts == cAsech uts acsch uts == cAcsch uts else ZERO : SG := "series must have constant coefficient zero" ONE : SG := "series must have constant coefficient one" NPOWERS : SG := "series expansion has terms of negative degree" (uts:%) ** (r:RN) == not one? coefficient(uts,0) => error "**: constant coefficient must be one" onePlusX : % := monomial(1,0) + monomial(1,1) ratPow := cPower(uts,r :: Coef) iCompose(ratPow,uts - 1) exp uts == zero? coefficient(uts,0) => expx := cExp monomial(1,1) iCompose(expx,uts) error concat("exp: ",ZERO) log uts == one? coefficient(uts,0) => log1PlusX := cLog(monomial(1,0) + monomial(1,1)) iCompose(log1PlusX,uts - 1) error concat("log: ",ONE) sin uts == zero? coefficient(uts,0) => sinx := cSin monomial(1,1) iCompose(sinx,uts) error concat("sin: ",ZERO) cos uts == zero? coefficient(uts,0) => cosx := cCos monomial(1,1) iCompose(cosx,uts) error concat("cos: ",ZERO) tan uts == zero? coefficient(uts,0) => tanx := cTan monomial(1,1) iCompose(tanx,uts) error concat("tan: ",ZERO) cot uts == zero? uts => error "cot: cot(0) is undefined" zero? coefficient(uts,0) => error concat("cot: ",NPOWERS) error concat("cot: ",ZERO) sec uts == zero? coefficient(uts,0) => secx := cSec monomial(1,1) iCompose(secx,uts) error concat("sec: ",ZERO) csc uts == zero? uts => error "csc: csc(0) is undefined" zero? coefficient(uts,0) => error concat("csc: ",NPOWERS) error concat("csc: ",ZERO) asin uts == zero? coefficient(uts,0) => asinx := cAsin monomial(1,1) iCompose(asinx,uts) error concat("asin: ",ZERO) atan uts == zero? coefficient(uts,0) => atanx := cAtan monomial(1,1) iCompose(atanx,uts) error concat("atan: ",ZERO) acos z == error "acos: acos undefined on this coefficient domain" acot z == error "acot: acot undefined on this coefficient domain" asec z == error "asec: asec undefined on this coefficient domain" acsc z == error "acsc: acsc undefined on this coefficient domain" sinh uts == zero? coefficient(uts,0) => sinhx := cSinh monomial(1,1) iCompose(sinhx,uts) error concat("sinh: ",ZERO) cosh uts == zero? coefficient(uts,0) => coshx := cCosh monomial(1,1) iCompose(coshx,uts) error concat("cosh: ",ZERO) tanh uts == zero? coefficient(uts,0) => tanhx := cTanh monomial(1,1) iCompose(tanhx,uts) error concat("tanh: ",ZERO) coth uts == zero? uts => error "coth: coth(0) is undefined" zero? coefficient(uts,0) => error concat("coth: ",NPOWERS) error concat("coth: ",ZERO) sech uts == zero? coefficient(uts,0) => sechx := cSech monomial(1,1) iCompose(sechx,uts) error concat("sech: ",ZERO) csch uts == zero? uts => error "csch: csch(0) is undefined" zero? coefficient(uts,0) => error concat("csch: ",NPOWERS) error concat("csch: ",ZERO) asinh uts == zero? coefficient(uts,0) => asinhx := cAsinh monomial(1,1) iCompose(asinhx,uts) error concat("asinh: ",ZERO) atanh uts == zero? coefficient(uts,0) => atanhx := cAtanh monomial(1,1) iCompose(atanhx,uts) error concat("atanh: ",ZERO) acosh uts == error "acosh: acosh undefined on this coefficient domain" acoth uts == error "acoth: acoth undefined on this coefficient domain" asech uts == error "asech: asech undefined on this coefficient domain" acsch uts == error "acsch: acsch undefined on this coefficient domain" if Coef has Field then if Coef has Algebra Fraction Integer then (uts:%) ** (r:Coef) == not one? coefficient(uts,1) => error "**: constant coefficient should be 1" cPower(uts,r) --% OutputForms coerce(x:%): OUT == count : NNI := _$streamCount$Lisp extend(x,count) seriesToOutputForm(getStream x,getRef x,variable x,center x,1) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain SUTS SparseUnivariateTaylorSeries>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}