\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra sum.spad}
\author{Stephen M. Watt, Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package ISUMP InnerPolySum}
<<package ISUMP InnerPolySum>>=
)abbrev package ISUMP InnerPolySum
++ Summation of polynomials
++ Author: SMW
++ Date Created: ???
++ Date Last Updated: 19 April 1991
++ Description: tools for the summation packages.
InnerPolySum(E, V, R, P): Exports == Impl where
    E: OrderedAbelianMonoidSup
    V: OrderedSet
    R: IntegralDomain
    P: PolynomialCategory(R, E, V)

    Z   ==> Integer
    Q   ==> Fraction Z
    SUP ==> SparseUnivariatePolynomial

    Exports ==> with
        sum: (P, V, Segment P) -> Record(num:P, den:Z)
            ++ sum(p(n), n = a..b) returns \spad{p(a) + p(a+1) + ... + p(b)}.
        sum: (P, V) -> Record(num:P, den: Z)
            ++ sum(p(n), n) returns \spad{P(n)},
            ++ the indefinite sum of \spad{p(n)} with respect to
            ++ upward difference on n, i.e. \spad{P(n+1) - P(n) = a(n)};

    Impl ==> add
        import PolynomialNumberTheoryFunctions()
        import UnivariatePolynomialCommonDenominator(Z, Q, SUP Q)

        pmul: (P, SUP Q) -> Record(num:SUP P, den:Z)

        pmul(c, p) ==
            pn := (rec := splitDenominator p).num
            [map(numer(#1) * c,
                pn)$SparseUnivariatePolynomialFunctions2(Q, P), rec.den]

        sum(p, v, s) ==
          indef := sum(p, v)
          [eval(indef.num, v, 1 + hi s) - eval(indef.num, v, lo s),
           indef.den]

        sum(p, v) ==
            up := univariate(p, v)
            lp := nil()$List(SUP P)
            ld := nil()$List(Z)
            while up ~= 0 repeat
                ud  := degree up; uc := leadingCoefficient up
                up  := reductum up
                rec := pmul(uc, 1 / (ud+1) * bernoulli(ud+1))
                lp  := concat(rec.num, lp)
                ld  := concat(rec.den, ld)
            d := lcm ld
            vp := +/[(d exquo di)::Z * pi for di in ld for pi in lp]
            [multivariate(vp, v), d]

@
\section{package GOSPER GosperSummationMethod}
<<package GOSPER GosperSummationMethod>>=
)abbrev package GOSPER GosperSummationMethod
++ Gosper's summation algorithm
++ Author: SMW
++ Date Created: ???
++ Date Last Updated: 19 August 1991
++ Description: Gosper's summation algorithm.
GosperSummationMethod(E, V, R, P, Q): Exports == Impl where
    E: OrderedAbelianMonoidSup
    V: OrderedSet
    R: IntegralDomain
    P: PolynomialCategory(R, E, V)
    Q: Join(RetractableTo Fraction Integer, Field with
              (coerce: P -> %; numer : % -> P; denom : % -> P))

    I   ==> Integer
    RN  ==> Fraction I
    PQ  ==> SparseMultivariatePolynomial(RN, V)
    RQ  ==> Fraction PQ

    Exports ==> with
        GospersMethod: (Q, V, () -> V) -> Union(Q, "failed")
            ++ GospersMethod(b, n, new) returns a rational function
            ++ \spad{rf(n)} such that \spad{a(n) * rf(n)} is the indefinite
            ++ sum of \spad{a(n)}
            ++ with respect to upward difference on \spad{n}, i.e.
            ++ \spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},
            ++ where \spad{b(n) = a(n)/a(n-1)} is a rational function.
            ++ Returns "failed" if no such rational function \spad{rf(n)}
            ++ exists.
            ++ Note: \spad{new} is a nullary function returning a new
            ++ V every time.
            ++ The condition on \spad{a(n)} is that \spad{a(n)/a(n-1)}
            ++ is a rational function of \spad{n}.
            --++  \spad{sum(a(n), n) = rf(n) * a(n)}.

    Impl ==> add
      import PolynomialCategoryQuotientFunctions(E, V, R, P, Q)
      import LinearSystemMatrixPackage(RQ,Vector RQ,Vector RQ,Matrix RQ)

      InnerGospersMethod: (RQ, V, () -> V) -> Union(RQ, "failed")
      GosperPQR:   (PQ, PQ, V, () -> V)       -> List PQ
      GosperDegBd: (PQ, PQ, PQ, V, () -> V)    -> I
      GosperF:     (I, PQ, PQ, PQ, V, () -> V) -> Union(RQ, "failed")
      linearAndNNIntRoot: (PQ, V) -> Union(I, "failed")
      deg0:    (PQ, V) -> I       -- degree with deg 0 = -1.
      pCoef:   (PQ, PQ) -> PQ  -- pCoef(p, a*b**2)
      RF2QIfCan: Q -> Union(RQ, "failed")
      UP2QIfCan: P -> Union(PQ,"failed")
      RFQ2R    : RQ -> Q
      PQ2R     : PQ -> Q
      rat?     : R  -> Boolean

      deg0(p, v) == (zero? p => -1; degree(p, v))
      rat? x     == retractIfCan(x::P::Q)@Union(RN, "failed") case RN
      RFQ2R f    == PQ2R(numer f) / PQ2R(denom f)

      PQ2R p ==
        map(#1::P::Q, #1::Q, p)$PolynomialCategoryLifting(
                                       IndexedExponents V, V, RN, PQ, Q)

      GospersMethod(aquo, n, newV) ==
        ((q := RF2QIfCan aquo) case "failed") or
          ((u := InnerGospersMethod(q::RQ, n, newV)) case "failed") =>
             "failed"
        RFQ2R(u::RQ)

      RF2QIfCan f ==
        (n := UP2QIfCan numer f) case "failed" => "failed"
        (d := UP2QIfCan denom f) case "failed" => "failed"
        n::PQ / d::PQ

      UP2QIfCan p ==
        every?(rat?, coefficients p) =>
          map(#1::PQ, (retractIfCan(#1::P::Q)@Union(RN, "failed"))::RN::PQ,
              p)$PolynomialCategoryLifting(E, V, R, P, PQ)
        "failed"

      InnerGospersMethod(aquo, n, newV) ==
            -- 1. Define coprime polys an,anm1 such that
            --      an/anm1=a(n)/a(n-1)
            an   := numer aquo
            anm1 := denom aquo

            -- 2. Define p,q,r such that
            --      a(n)/a(n-1) = (p(n)/p(n-1)) * (q(n)/r(n))
            --    and
            --      gcd(q(n), r(n+j)) = 1, for all j: NNI.
            pqr:= GosperPQR(an, anm1, n, newV)
            pn := first pqr; qn := second pqr; rn := third pqr

            -- 3. If the sum is a rational fn, there is a poly f with
            --      sum(a(n), n) = q(n+1)/p(n) * a(n) * f(n).

            -- 4. Bound the degree of f(n).
            negative?(k := GosperDegBd(pn, qn, rn, n, newV)) => "failed"

            -- 5. Find a polynomial f of degree at most k, satisfying
            --      p(n) = q(n+1)*f(n) - r(n)*f(n-1)
            (ufn := GosperF(k, pn, qn, rn, n, newV)) case "failed" =>
              "failed"
            fn  := ufn::RQ

            -- 6. The sum is q(n-1)/p(n)*f(n) * a(n). We leave out a(n).
            --qnm1 := eval(qn,n,n::PQ - 1)
            --qnm1/pn * fn
            qn1 := eval(qn,n,n::PQ + 1)
            qn1/pn * fn

      GosperF(k, pn, qn, rn, n, newV) ==
            mv := newV(); mp := mv::PQ; np := n::PQ
            fn:       PQ := +/[mp**(i+1) * np**i for i in 0..k]
            fnminus1: PQ := eval(fn, n, np-1)
            qnplus1        := eval(qn, n, np+1)
            zro  := qnplus1 * fn - rn * fnminus1 - pn
            zron := univariate(zro, n)
            dz  := degree zron
            mat: Matrix RQ := zero(dz+1, (k+1)::NonNegativeInteger)
            vec: Vector RQ := new(dz+1, 0)
            while zron ~= 0 repeat
                cz := leadingCoefficient zron
                dz := degree zron
                zron := reductum zron
                mz := univariate(cz, mv)
                while mz ~= 0 repeat
                    cmz := leadingCoefficient(mz)::RQ
                    dmz := degree mz
                    mz := reductum mz
                    dmz = 0 => vec(dz + minIndex vec) := -cmz
                    qsetelt!(mat, dz + minRowIndex mat,
                                 dmz + minColIndex(mat) - 1, cmz)
            (soln := particularSolution(mat, vec)) case "failed" => "failed"
            vec := soln::Vector RQ
            (+/[np**i * vec(i + minIndex vec) for i in 0..k])@RQ

      GosperPQR(an, anm1, n, newV) ==
            np := n::PQ   -- polynomial version of n
            -- Initial guess.
            pn: PQ := 1
            qn: PQ := an
            rn: PQ := anm1
            -- Find all j: NNI giving common factors to q(n) and r(n+j).
            j     := newV()
            rnj   := eval(rn, n, np + j::PQ)
            res   := resultant(qn, rnj, n)
            fres  := factor(res)$MRationalFactorize(IndexedExponents V,
                                                    V, I, PQ)
            js    := [rt::I for fe in factors fres
                       | (rt := linearAndNNIntRoot(fe.factor,j)) case I]
            -- For each such j, change variables to remove the gcd.
            for rt in js repeat
                rtp:= rt::PQ  -- polynomial version of rt
                gn := gcd(qn, eval(rn,n,np+rtp))
                qn := (qn exquo gn)::PQ
                rn := (rn exquo eval(gn, n, np-rtp))::PQ
                pn := pn * */[eval(gn, n, np-i::PQ) for i in 0..rt-1]
            [pn, qn, rn]

        -- Find a degree bound for the polynomial f(n) which satisfies
        --   p(n) = q(n+1)*f(n) - r(n)*f(n-1).
      GosperDegBd(pn, qn, rn, n, newV) ==
            np := n::PQ
            qnplus1  := eval(qn, n, np+1)
            lplus  := deg0(qnplus1 + rn,  n)
            lminus := deg0(qnplus1 - rn, n)
            degp   := deg0(pn, n)
            k := degp - max(lplus-1, lminus)
            lplus <= lminus => k
            -- Find L(k), such that
            --   p(n) = L(k)*c[k]*n**(k + lplus - 1) + ...
            -- To do this, write f(n) and f(n-1) symbolically.
            --   f(n)  = c[k]*n**k + c[k-1]*n**(k-1) +O(n**(k-2))
            --   f(n-1)=c[k]*n**k + (c[k-1]-k*c[k])*n**(k-1)+O(n**(k-2))
            kk := newV()::PQ
            ck := newV()::PQ
            ckm1 := newV()::PQ
            nkm1:= newV()::PQ
            nk := np*nkm1
            headfn   := ck*nk +         ckm1*nkm1
            headfnm1 := ck*nk + (ckm1-kk*ck)*nkm1
            -- Then p(n) = q(n+1)*f(n) - r(n)*f(n-1) gives L(k).
            pk   := qnplus1 * headfn - rn * headfnm1
            lcpk := pCoef(pk, ck*np*nkm1)
            -- The degree bd is now given by k, and the root of L.
            k0 := linearAndNNIntRoot(lcpk, mainVariable(kk)::V)
            k0 case "failed" => k
            max(k0::I, k)

      pCoef(p, nom) ==
            not monomial? nom =>
              error "pCoef requires a monomial 2nd arg"
            vlist := variables nom
            for v in vlist while p ~= 0 repeat
                unom:= univariate(nom,v)
                pow:=degree unom
                nom:=leadingCoefficient unom
                up  := univariate(p, v)
                p   := coefficient(up, pow)
            p

      linearAndNNIntRoot(mp, v) ==
            p := univariate(mp, v)
            not one? degree p => "failed"
            (p1 := retractIfCan(coefficient(p, 1))@Union(RN,"failed"))
             case "failed" or
              (p0 := retractIfCan(coefficient(p, 0))@Union(RN,"failed"))
               case "failed" => "failed"
            rt := -(p0::RN)/(p1::RN)
            negative? rt or not one? denom rt => "failed"
            numer rt

@
\section{package SUMRF RationalFunctionSum}
<<package SUMRF RationalFunctionSum>>=
)abbrev package SUMRF RationalFunctionSum
++ Summation of rational functions
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 19 April 1991
++ Description: Computes sums of rational functions;
RationalFunctionSum(R): Exports == Impl where
    R: Join(IntegralDomain, RetractableTo Integer)

    P   ==> Polynomial R
    RF  ==> Fraction P
    FE  ==> Expression R
    SE  ==> Symbol

    Exports ==> with
        sum: (P, SE) -> RF
            ++ sum(a(n), n) returns \spad{A} which
            ++ is the indefinite sum of \spad{a} with respect to
            ++ upward difference on \spad{n}, i.e. \spad{A(n+1) - A(n) = a(n)}.
        sum: (RF, SE) -> Union(RF, FE)
            ++ sum(a(n), n) returns \spad{A} which
            ++ is the indefinite sum of \spad{a} with respect to
            ++ upward difference on \spad{n}, i.e. \spad{A(n+1) - A(n) = a(n)}.
        sum: (P, SegmentBinding P) -> RF
            ++ sum(f(n), n = a..b) returns \spad{f(a) + f(a+1) + ... f(b)}.
        sum: (RF, SegmentBinding RF) -> Union(RF, FE)
            ++ sum(f(n), n = a..b) returns \spad{f(a) + f(a+1) + ... f(b)}.

    Impl ==> add
      import RationalFunction R
      import GosperSummationMethod(IndexedExponents SE, SE, R, P, RF)

      innersum    : (RF, SE) -> Union(RF, "failed")
      innerpolysum: (P, SE) -> RF

      sum(f:RF, s:SegmentBinding RF) ==
        (indef := innersum(f, v := variable s)) case "failed" =>
          summation(f::FE,map(#1::FE,s)$SegmentBindingFunctions2(RF,FE))
        eval(indef::RF, v, 1 + hi segment s)
          - eval(indef::RF, v,lo segment s)

      sum(an:RF, n:SE) ==
        (u := innersum(an, n)) case "failed" => summation(an::FE, n)
        u::RF

      sum(p:P, s:SegmentBinding P) ==
        f := sum(p, v := variable s)
        eval(f, v, (1 + hi segment s)::RF) - eval(f,v,lo(segment s)::RF)

      innersum(an, n) ==
        (r := retractIfCan(an)@Union(P, "failed")) case "failed" =>
           an1 := eval(an, n, -1 + n::RF)
           (u := GospersMethod(an/an1, n, new$SE)) case "failed" =>
             "failed"
           an1 * eval(u::RF, n, -1 + n::RF)
        sum(r::P, n)

      sum(p:P, n:SE) ==
        rec := sum(p, n)$InnerPolySum(IndexedExponents SE, SE, R, P)
        rec.num / (rec.den :: P)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package ISUMP InnerPolySum>>
<<package GOSPER GosperSummationMethod>>
<<package SUMRF RationalFunctionSum>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}