\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra suls.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain SULS SparseUnivariateLaurentSeries} <<domain SULS SparseUnivariateLaurentSeries>>= )abbrev domain SULS SparseUnivariateLaurentSeries ++ Author: Clifton J. Williamson ++ Date Created: 11 November 1994 ++ Date Last Updated: 10 March 1995 ++ Basic Operations: ++ Related Domains: InnerSparseUnivariatePowerSeries, ++ SparseUnivariateTaylorSeries, SparseUnivariatePuiseuxSeries ++ Also See: ++ AMS Classifications: ++ Keywords: sparse, series ++ Examples: ++ References: ++ Description: Sparse Laurent series in one variable ++ \spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent ++ series in one variable with coefficients in an arbitrary ring. The ++ parameters of the type specify the coefficient ring, the power series ++ variable, and the center of the power series expansion. For example, ++ \spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent ++ series in \spad{(x - 3)} with integer coefficients. SparseUnivariateLaurentSeries(Coef,var,cen): Exports == Implementation where Coef : Ring var : Symbol cen : Coef I ==> Integer NNI ==> NonNegativeInteger OUT ==> OutputForm P ==> Polynomial Coef RF ==> Fraction Polynomial Coef RN ==> Fraction Integer S ==> String SUTS ==> SparseUnivariateTaylorSeries(Coef,var,cen) EFULS ==> ElementaryFunctionsUnivariateLaurentSeries(Coef,SUTS,%) Exports ==> UnivariateLaurentSeriesConstructorCategory(Coef,SUTS) with coerce: Variable(var) -> % ++ \spad{coerce(var)} converts the series variable \spad{var} into a ++ Laurent series. differentiate: (%,Variable(var)) -> % ++ \spad{differentiate(f(x),x)} returns the derivative of ++ \spad{f(x)} with respect to \spad{x}. if Coef has Algebra Fraction Integer then integrate: (%,Variable(var)) -> % ++ \spad{integrate(f(x))} returns an anti-derivative of the power ++ series \spad{f(x)} with constant coefficient 0. ++ We may integrate a series when we can divide coefficients ++ by integers. Implementation ==> InnerSparseUnivariatePowerSeries(Coef) add Rep := InnerSparseUnivariatePowerSeries(Coef) variable x == var center x == cen coerce(v: Variable(var)) == zero? cen => monomial(1,1) monomial(1,1) + monomial(cen,0) pole? x == negative? order(x,0) --% operations with Taylor series coerce(uts:SUTS) == uts pretend % taylorIfCan uls == pole? uls => "failed" uls pretend SUTS taylor uls == (uts := taylorIfCan uls) case "failed" => error "taylor: Laurent series has a pole" uts :: SUTS retractIfCan(x:%):Union(SUTS,"failed") == taylorIfCan x laurent(n,uts) == monomial(1,n) * (uts :: %) removeZeroes uls == uls removeZeroes(n,uls) == uls taylorRep uls == taylor(monomial(1,-order(uls,0)) * uls) degree uls == order(uls,0) numer uls == taylorRep uls denom uls == monomial(1,(-order(uls,0)) :: NNI)$SUTS (uts:SUTS) * (uls:%) == (uts :: %) * uls (uls:%) * (uts:SUTS) == uls * (uts :: %) if Coef has Field then (uts1:SUTS) / (uts2:SUTS) == (uts1 :: %) / (uts2 :: %) recip(uls) == iExquo(1,uls,false) if Coef has IntegralDomain then uls1 exquo uls2 == iExquo(uls1,uls2,false) if Coef has Field then uls1:% / uls2:% == (q := uls1 exquo uls2) case "failed" => error "quotient cannot be computed" q :: % differentiate(uls:%,v:Variable(var)) == differentiate uls elt(uls1:%,uls2:%) == order(uls2,1) < 1 => error "elt: second argument must have positive order" negative?(ord := order(uls1,0)) => (recipr := recip uls2) case "failed" => error "elt: second argument not invertible" uls3 := uls1 * monomial(1,-ord) iCompose(uls3,uls2) * (recipr :: %) ** ((-ord) :: NNI) iCompose(uls1,uls2) if Coef has IntegralDomain then rationalFunction(uls,n) == zero?(e := order(uls,0)) => negative? n => 0 polynomial(taylor uls,n :: NNI) :: RF negative?(m := n - e) => 0 poly := polynomial(taylor(monomial(1,-e) * uls),m :: NNI) :: RF v := variable(uls) :: RF; c := center(uls) :: P :: RF poly / (v - c) ** ((-e) :: NNI) rationalFunction(uls,n1,n2) == rationalFunction(truncate(uls,n1,n2),n2) if Coef has Algebra Fraction Integer then integrate uls == zero? coefficient(uls,-1) => error "integrate: series has term of order -1" integrate(uls)$Rep integrate(uls:%,v:Variable(var)) == integrate uls (uls1:%) ** (uls2:%) == exp(log(uls1) * uls2) exp uls == exp(uls)$EFULS log uls == log(uls)$EFULS sin uls == sin(uls)$EFULS cos uls == cos(uls)$EFULS tan uls == tan(uls)$EFULS cot uls == cot(uls)$EFULS sec uls == sec(uls)$EFULS csc uls == csc(uls)$EFULS asin uls == asin(uls)$EFULS acos uls == acos(uls)$EFULS atan uls == atan(uls)$EFULS acot uls == acot(uls)$EFULS asec uls == asec(uls)$EFULS acsc uls == acsc(uls)$EFULS sinh uls == sinh(uls)$EFULS cosh uls == cosh(uls)$EFULS tanh uls == tanh(uls)$EFULS coth uls == coth(uls)$EFULS sech uls == sech(uls)$EFULS csch uls == csch(uls)$EFULS asinh uls == asinh(uls)$EFULS acosh uls == acosh(uls)$EFULS atanh uls == atanh(uls)$EFULS acoth uls == acoth(uls)$EFULS asech uls == asech(uls)$EFULS acsch uls == acsch(uls)$EFULS if Coef has CommutativeRing then (uls:%) ** (r:RN) == cRationalPower(uls,r) else (uls:%) ** (r:RN) == negative?(ord0 := order(uls,0)) => order := ord0 :: I (n := order exquo denom(r)) case "failed" => error "**: rational power does not exist" uts := retract(uls * monomial(1,-order))@SUTS utsPow := (uts ** r) :: % monomial(1,(n :: I) * numer(r)) * utsPow uts := retract(uls)@SUTS (uts ** r) :: % --% OutputForms coerce(uls:%): OUT == st := getStream uls if not(explicitlyEmpty? st or explicitEntries? st) _ and (nx := retractIfCan(elt getRef uls))@Union(I,"failed") case I then count : NNI := _$streamCount$Lisp degr := min(count,(nx :: I) + count + 1) extend(uls,degr) seriesToOutputForm(st,getRef uls,variable uls,center uls,1) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain SULS SparseUnivariateLaurentSeries>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}