\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra sturm.spad} \author{Lalo Gonzalez-Vega} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package SHP SturmHabichtPackage} <<package SHP SturmHabichtPackage>>= )abbrev package SHP SturmHabichtPackage ++ Author: Lalo Gonzalez-Vega ++ Date Created: 1994? ++ Date Last Updated: 30 January 1996 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: localization ++ References: ++ Description: ++ This package produces functions for counting ++ etc. real roots of univariate polynomials in x over R, which must ++ be an OrderedIntegralDomain SturmHabichtPackage(R,x): T == C where R: OrderedIntegralDomain x: Symbol UP ==> UnivariatePolynomial L ==> List INT ==> Integer NNI ==> NonNegativeInteger T == with -- subresultantSequenceBegin:(UP(x,R),UP(x,R)) -> L UP(x,R) -- ++ \spad{subresultantSequenceBegin(p1,p2)} computes the initial terms -- ++ of the Subresultant sequence Sres(j)(P,deg(P),Q,deg(P)-1) -- ++ when deg(Q)<deg(P) -- subresultantSequenceNext:L UP(x,R) -> L UP(x,R) -- subresultantSequenceInner:(UP(x,R),UP(x,R)) -> L UP(x,R) subresultantSequence:(UP(x,R),UP(x,R)) -> L UP(x,R) ++ subresultantSequence(p1,p2) computes the (standard) ++ subresultant sequence of p1 and p2 -- sign:R -> R -- delta:NNI -> R -- polsth1:(UP(x,R),NNI,UP(x,R),NNI,R) -> L UP(x,R) -- polsth2:(UP(x,R),NNI,UP(x,R),NNI,R) -> L UP(x,R) -- polsth3:(UP(x,R),NNI,UP(x,R),NNI,R) -> L UP(x,R) SturmHabichtSequence:(UP(x,R),UP(x,R)) -> L UP(x,R) ++ SturmHabichtSequence(p1,p2) computes the Sturm-Habicht ++ sequence of p1 and p2 SturmHabichtCoefficients:(UP(x,R),UP(x,R)) -> L R ++ SturmHabichtCoefficients(p1,p2) computes the principal ++ Sturm-Habicht coefficients of p1 and p2 -- variation:L R -> INT -- permanence:L R -> INT -- qzeros:L R -> L R -- epsil:(NNI,R,R) -> INT -- numbnce:L R -> NNI -- numbce:L R -> NNI -- wfunctaux:L R -> INT -- wfunct:L R -> INT SturmHabicht:(UP(x,R),UP(x,R)) -> INT ++ SturmHabicht(p1,p2) computes c_{+}-c_{-} where ++ c_{+} is the number of real roots of p1 with p2>0 and c_{-} ++ is the number of real roots of p1 with p2<0. If p2=1 what ++ you get is the number of real roots of p1. countRealRoots:(UP(x,R)) -> INT ++ countRealRoots(p) says how many real roots p has if R has GcdDomain then SturmHabichtMultiple:(UP(x,R),UP(x,R)) -> INT ++ SturmHabichtMultiple(p1,p2) computes c_{+}-c_{-} where ++ c_{+} is the number of real roots of p1 with p2>0 and c_{-} ++ is the number of real roots of p1 with p2<0. If p2=1 what ++ you get is the number of real roots of p1. countRealRootsMultiple:(UP(x,R)) -> INT ++ countRealRootsMultiple(p) says how many real roots p has, ++ counted with multiplicity C == add p1,p2: UP(x,R) Ex ==> OutputForm import OutputForm subresultantSequenceBegin(p1,p2):L UP(x,R) == d1:NNI:=degree(p1) d2:NNI:=degree(p2) n:NNI:=(d1-1)::NNI d2 = n => Pr:UP(x,R):=pseudoRemainder(p1,p2) append([p1,p2]::L UP(x,R),[Pr]::L UP(x,R)) d2 = (n-1)::NNI => Lc1:UP(x,R):=leadingCoefficient(p1)*leadingCoefficient(p2)*p2 Lc2:UP(x,R):=-leadingCoefficient(p1)*pseudoRemainder(p1,p2) append([p1,p2]::L UP(x,R),[Lc1,Lc2]::L UP(x,R)) LSubr:L UP(x,R):=[p1,p2] in1:INT:=(d2+1)::INT in2:INT:=(n-1)::INT for i in in1..in2 repeat LSubr:L UP(x,R):=append(LSubr::L UP(x,R),[0]::L UP(x,R)) c1:R:=(leadingCoefficient(p1)*leadingCoefficient(p2))**((n-d2)::NNI) Lc1:UP(x,R):=monomial(c1,0)*p2 Lc2:UP(x,R):= (-leadingCoefficient(p1))**((n-d2)::NNI)*pseudoRemainder(p1,p2) append(LSubr::L UP(x,R),[Lc1,Lc2]::L UP(x,R)) subresultantSequenceNext(LcsI:L UP(x,R)):L UP(x,R) == p2:UP(x,R):=last LcsI p1:UP(x,R):=first rest reverse LcsI d1:NNI:=degree(p1) d2:NNI:=degree(p2) in1:NNI:=(d1-1)::NNI d2 = in1 => pr1:UP(x,R):= (pseudoRemainder(p1,p2) exquo (leadingCoefficient(p1))**2)::UP(x,R) append(LcsI:L UP(x,R),[pr1]:L UP(x,R)) d2 < in1 => c1:R:=leadingCoefficient(p1) pr1:UP(x,R):= (leadingCoefficient(p2)**((in1-d2)::NNI)*p2 exquo c1**((in1-d2)::NNI))::UP(x,R) pr2:UP(x,R):= (pseudoRemainder(p1,p2) exquo (-c1)**((in1-d2+2)::NNI))::UP(x,R) LSub:L UP(x,R):=[pr1,pr2] for k in ((d2+1)::INT)..((in1-1)::INT) repeat LSub:L UP(x,R):=append([0]:L UP(x,R),LSub:L UP(x,R)) append(LcsI:L UP(x,R),LSub:L UP(x,R)) subresultantSequenceInner(p1,p2):L UP(x,R) == Lin:L UP(x,R):=subresultantSequenceBegin(p1:UP(x,R),p2:UP(x,R)) indf:NNI:= if not(Lin.last::UP(x,R) = 0) then degree(Lin.last::UP(x,R)) else 0 while not(indf = 0) repeat Lin:L UP(x,R):=subresultantSequenceNext(Lin:L UP(x,R)) indf:NNI:= if not(Lin.last::UP(x,R)=0) then degree(Lin.last::UP(x,R)) else 0 for j in #(Lin:L UP(x,R))..degree(p1) repeat Lin:L UP(x,R):=append(Lin:L UP(x,R),[0]:L UP(x,R)) Lin -- Computation of the subresultant sequence Sres(j)(P,p,Q,q) when: -- deg(P) = p and deg(Q) = q and p > q subresultantSequence(p1,p2):L UP(x,R) == p:NNI:=degree(p1) q:NNI:=degree(p2) List1:L UP(x,R):=subresultantSequenceInner(p1,p2) List2:L UP(x,R):=[p1,p2] c1:R:=leadingCoefficient(p1) for j in 3..#(List1) repeat Pr0:UP(x,R):=List1.j Pr1:UP(x,R):=(Pr0 exquo c1**((p-q-1)::NNI))::UP(x,R) List2:L UP(x,R):=append(List2:L UP(x,R),[Pr1]:L UP(x,R)) List2 -- Computation of the sign (+1,0,-1) of an element in an ordered integral -- domain -- sign(r:R):R == -- r =$R 0 => 0 -- r >$R 0 => 1 -- -1 -- Computation of the delta function: delta(int1:NNI):R == (-1)**((int1*(int1+1) exquo 2)::NNI) -- Computation of the Sturm-Habicht sequence of two polynomials P and Q -- in R[x] where R is an ordered integral domaine polsth1(p1,p:NNI,p2,q:NNI,c1:R):L UP(x,R) == sc1:R:=(sign(c1))::R Pr1:UP(x,R):=pseudoRemainder(differentiate(p1)*p2,p1) Pr2:UP(x,R):=(Pr1 exquo c1**(q::NNI))::UP(x,R) c2:R:=leadingCoefficient(Pr2) r:NNI:=degree(Pr2) Pr3:UP(x,R):=monomial(sc1**((p-r-1)::NNI),0)*p1 Pr4:UP(x,R):=monomial(sc1**((p-r-1)::NNI),0)*Pr2 Listf:L UP(x,R):=[Pr3,Pr4] if r < p-1 then Pr5:UP(x,R):=monomial(delta((p-r-1)::NNI)*c2**((p-r-1)::NNI),0)*Pr2 for j in ((r+1)::INT)..((p-2)::INT) repeat Listf:L UP(x,R):=append(Listf:L UP(x,R),[0]:L UP(x,R)) Listf:L UP(x,R):=append(Listf:L UP(x,R),[Pr5]:L UP(x,R)) if Pr1=0 then List1:L UP(x,R):=Listf else List1:L UP(x,R):=subresultantSequence(p1,Pr2) List2:L UP(x,R):=[] for j in 0..((r-1)::INT) repeat Pr6:UP(x,R):=monomial(delta((p-j-1)::NNI),0)*List1.((p-j+1)::NNI) List2:L UP(x,R):=append([Pr6]:L UP(x,R),List2:L UP(x,R)) append(Listf:L UP(x,R),List2:L UP(x,R)) polsth2(p1,p:NNI,p2,q:NNI,c1:R):L UP(x,R) == sc1:R:=(sign(c1))::R Pr1:UP(x,R):=monomial(sc1,0)*p1 Pr2:UP(x,R):=differentiate(p1)*p2 Pr3:UP(x,R):=monomial(sc1,0)*Pr2 Listf:L UP(x,R):=[Pr1,Pr3] List1:L UP(x,R):=subresultantSequence(p1,Pr2) List2:L UP(x,R):=[] for j in 0..((p-2)::INT) repeat Pr4:UP(x,R):=monomial(delta((p-j-1)::NNI),0)*List1.((p-j+1)::NNI) Pr5:UP(x,R):=(Pr4 exquo c1)::UP(x,R) List2:L UP(x,R):=append([Pr5]:L UP(x,R),List2:L UP(x,R)) append(Listf:L UP(x,R),List2:L UP(x,R)) polsth3(p1,p:NNI,p2,q:NNI,c1:R):L UP(x,R) == sc1:R:=(sign(c1))::R q1:NNI:=(q-1)::NNI v:NNI:=(p+q1)::NNI Pr1:UP(x,R):=monomial(delta(q1::NNI)*sc1**((q+1)::NNI),0)*p1 Listf:L UP(x,R):=[Pr1] List1:L UP(x,R):=subresultantSequence(differentiate(p1)*p2,p1) List2:L UP(x,R):=[] for j in 0..((p-1)::NNI) repeat Pr2:UP(x,R):=monomial(delta((v-j)::NNI),0)*List1.((v-j+1)::NNI) Pr3:UP(x,R):=(Pr2 exquo c1)::UP(x,R) List2:L UP(x,R):=append([Pr3]:L UP(x,R),List2:L UP(x,R)) append(Listf:L UP(x,R),List2:L UP(x,R)) SturmHabichtSequence(p1,p2):L UP(x,R) == p:NNI:=degree(p1) q:NNI:=degree(p2) c1:R:=leadingCoefficient(p1) c1 = 1 or q = 1 => polsth1(p1,p,p2,q,c1) q = 0 => polsth2(p1,p,p2,q,c1) polsth3(p1,p,p2,q,c1) -- Computation of the Sturm-Habicht principal coefficients of two -- polynomials P and Q in R[x] where R is an ordered integral domain SturmHabichtCoefficients(p1,p2):L R == List1:L UP(x,R):=SturmHabichtSequence(p1,p2) -- List2:L R:=[] qp:NNI:=#(List1)::NNI [coefficient(p,(qp-j)::NNI) for p in List1 for j in 1..qp] -- for j in 1..qp repeat -- Ply:R:=coefficient(List1.j,(qp-j)::NNI) -- List2:L R:=append(List2,[Ply]) -- List2 -- Computation of the number of sign variations of a list of non zero -- elements in an ordered integral domain variation(Lsig:L R):INT == #Lsig = 1 => 0 elt1:R:=first Lsig elt2:R:=Lsig.2 sig1:R:=(sign(elt1*elt2))::R List1:L R:=rest Lsig sig1 = 1 => variation List1 1+variation List1 -- Computation of the number of sign permanences of a list of non zero -- elements in an ordered integral domain permanence(Lsig:L R):INT == #Lsig = 1 => 0 elt1:R:=first Lsig elt2:R:=Lsig.2 sig1:R:=(sign(elt1*elt2))::R List1:L R:=rest Lsig sig1 = -1 => permanence List1 1+permanence List1 -- Computation of the functional W which works over a list of elements -- in an ordered integral domain, with non zero first element qzeros(Lsig:L R):L R == while last Lsig = 0 repeat Lsig:L R:=reverse rest reverse Lsig Lsig epsil(int1:NNI,elt1:R,elt2:R):INT == int1 = 0 => 0 odd? int1 => 0 ct1:INT:=if positive? elt1 then 1 else -1 ct2:INT:=if positive? elt2 then 1 else -1 ct3:NNI:=(int1 exquo 2)::NNI ct4:INT:=(ct1*ct2)::INT ((-1)**(ct3::NNI))*ct4 numbnce(Lsig:L R):NNI == null Lsig => 0 eltp:R:=Lsig.1 eltp = 0 => 0 1 + numbnce(rest Lsig) numbce(Lsig:L R):NNI == null Lsig => 0 eltp:R:=Lsig.1 not(eltp = 0) => 0 1 + numbce(rest Lsig) wfunctaux(Lsig:L R):INT == null Lsig => 0 List2:L R:=[] List1:L R:=Lsig:L R cont1:NNI:=numbnce(List1:L R) for j in 1..cont1 repeat List2:L R:=append(List2:L R,[first List1]:L R) List1:L R:=rest List1 ind2:INT:=0 cont2:NNI:=numbce(List1:L R) for j in 1..cont2 repeat List1:L R:=rest List1 ind2:INT:=epsil(cont2:NNI,last List2,first List1) ind3:INT:=permanence(List2:L R)-variation(List2:L R) ind4:INT:=ind2+ind3 ind4+wfunctaux(List1:L R) wfunct(Lsig:L R):INT == List1:L R:=qzeros(Lsig:L R) wfunctaux(List1:L R) -- Computation of the integer number: -- #[{a in Rc(R)/P(a)=0 Q(a)>0}] - #[{a in Rc(R)/P(a)=0 Q(a)<0}] -- where: -- - R is an ordered integral domain, -- - Rc(R) is the real clousure of R, -- - P and Q are polynomials in R[x], -- - by #[A] we note the cardinal of the set A -- In particular: -- - SturmHabicht(P,1) is the number of "real" roots of P, -- - SturmHabicht(P,Q**2) is the number of "real" roots of P making Q neq 0 SturmHabicht(p1,p2):INT == -- print("+" :: Ex) p2 = 0 => 0 degree(p1:UP(x,R)) = 0 => 0 List1:L UP(x,R):=SturmHabichtSequence(p1,p2) qp:NNI:=#(List1)::NNI wfunct [coefficient(p,(qp-j)::NNI) for p in List1 for j in 1..qp] countRealRoots(p1):INT == SturmHabicht(p1,1) if R has GcdDomain then SturmHabichtMultiple(p1,p2):INT == -- print("+" :: Ex) p2 = 0 => 0 degree(p1:UP(x,R)) = 0 => 0 SH:L UP(x,R):=SturmHabichtSequence(p1,p2) qp:NNI:=#(SH)::NNI ans:= wfunct [coefficient(p,(qp-j)::NNI) for p in SH for j in 1..qp] SH:=reverse SH while first SH = 0 repeat SH:=rest SH degree first SH = 0 => ans -- OK: it probably wasn't square free, so this item is probably the -- gcd of p1 and p1' -- unless p1 and p2 have a factor in common (naughty!) differentiate(p1) exquo first SH case UP(x,R) => -- it was the gcd of p1 and p1' ans+SturmHabichtMultiple(first SH,p2) sqfr:=factorList squareFree p1 #sqfr = 1 and sqfr.first.xpnt=1 => ans reduce("+",[f.xpnt*SturmHabicht(f.fctr,p2) for f in sqfr]) countRealRootsMultiple(p1):INT == SturmHabichtMultiple(p1,1) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package SHP SturmHabichtPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}