\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra sttf.spad} \author{William Burge, Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package STTF StreamTranscendentalFunctions} <<package STTF StreamTranscendentalFunctions>>= )abbrev package STTF StreamTranscendentalFunctions ++ Author: William Burge, Clifton J. Williamson ++ Date Created: 1986 ++ Date Last Updated: 6 March 1995 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: Taylor series, elementary function, transcendental function ++ Examples: ++ References: ++ Description: ++ StreamTranscendentalFunctions implements transcendental functions on ++ Taylor series, where a Taylor series is represented by a stream of ++ its coefficients. StreamTranscendentalFunctions(Coef): Exports == Implementation where Coef : Algebra Fraction Integer L ==> List I ==> Integer RN ==> Fraction Integer SG ==> String ST ==> Stream Coef STT ==> StreamTaylorSeriesOperations Coef YS ==> Y$ParadoxicalCombinatorsForStreams(Coef) Exports ==> with --% Exponentials and Logarithms exp : ST -> ST ++ exp(st) computes the exponential of a power series st. log : ST -> ST ++ log(st) computes the log of a power series. ** : (ST,ST) -> ST ++ st1 ** st2 computes the power of a power series st1 by another ++ power series st2. --% TrigonometricFunctionCategory sincos : ST -> Record(sin:ST, cos:ST) ++ sincos(st) returns a record containing the sine and cosine ++ of a power series st. sin : ST -> ST ++ sin(st) computes sine of a power series st. cos : ST -> ST ++ cos(st) computes cosine of a power series st. tan : ST -> ST ++ tan(st) computes tangent of a power series st. cot : ST -> ST ++ cot(st) computes cotangent of a power series st. sec : ST -> ST ++ sec(st) computes secant of a power series st. csc : ST -> ST ++ csc(st) computes cosecant of a power series st. asin : ST -> ST ++ asin(st) computes arcsine of a power series st. acos : ST -> ST ++ acos(st) computes arccosine of a power series st. atan : ST -> ST ++ atan(st) computes arctangent of a power series st. acot : ST -> ST ++ acot(st) computes arccotangent of a power series st. asec : ST -> ST ++ asec(st) computes arcsecant of a power series st. acsc : ST -> ST ++ acsc(st) computes arccosecant of a power series st. --% HyperbloicTrigonometricFunctionCategory sinhcosh: ST -> Record(sinh:ST, cosh:ST) ++ sinhcosh(st) returns a record containing ++ the hyperbolic sine and cosine ++ of a power series st. sinh : ST -> ST ++ sinh(st) computes the hyperbolic sine of a power series st. cosh : ST -> ST ++ cosh(st) computes the hyperbolic cosine of a power series st. tanh : ST -> ST ++ tanh(st) computes the hyperbolic tangent of a power series st. coth : ST -> ST ++ coth(st) computes the hyperbolic cotangent of a power series st. sech : ST -> ST ++ sech(st) computes the hyperbolic secant of a power series st. csch : ST -> ST ++ csch(st) computes the hyperbolic cosecant of a power series st. asinh : ST -> ST ++ asinh(st) computes the inverse hyperbolic sine of a power series st. acosh : ST -> ST ++ acosh(st) computes the inverse hyperbolic cosine ++ of a power series st. atanh : ST -> ST ++ atanh(st) computes the inverse hyperbolic tangent ++ of a power series st. acoth : ST -> ST ++ acoth(st) computes the inverse hyperbolic ++ cotangent of a power series st. asech : ST -> ST ++ asech(st) computes the inverse hyperbolic secant of a ++ power series st. acsch : ST -> ST ++ acsch(st) computes the inverse hyperbolic ++ cosecant of a power series st. Implementation ==> add import StreamTaylorSeriesOperations Coef TRANSFCN : Boolean := Coef has TranscendentalFunctionCategory --% Error Reporting TRCONST : SG := "series expansion involves transcendental constants" NPOWERS : SG := "series expansion has terms of negative degree" FPOWERS : SG := "series expansion has terms of fractional degree" MAYFPOW : SG := "series expansion may have terms of fractional degree" LOGS : SG := "series expansion has logarithmic term" NPOWLOG : SG := "series expansion has terms of negative degree or logarithmic term" FPOWLOG : SG := "series expansion has terms of fractional degree or logarithmic term" NOTINV : SG := "leading coefficient not invertible" --% Exponentials and Logarithms expre:(Coef,ST,ST) -> ST expre(r,e,dx) == lazyIntegrate(r,e*dx) exp z == empty? z => 1 :: ST (coef := frst z) = 0 => YS expre(1,#1,deriv z) TRANSFCN => YS expre(exp coef,#1,deriv z) error concat("exp: ",TRCONST) log z == empty? z => error "log: constant coefficient should not be 0" (coef := frst z) = 0 => error "log: constant coefficient should not be 0" coef = 1 => lazyIntegrate(0,deriv z/z) TRANSFCN => lazyIntegrate(log coef,deriv z/z) error concat("log: ",TRCONST) z1:ST ** z2:ST == exp(z2 * log z1) --% Trigonometric Functions sincosre:(Coef,Coef,L ST,ST,Coef) -> L ST sincosre(rs,rc,sc,dx,sign) == [lazyIntegrate(rs,(second sc)*dx),lazyIntegrate(rc,sign*(first sc)*dx)] -- When the compiler had difficulties with the above definition, -- I did the following to help it: -- sincosre:(Coef,Coef,L ST,ST,Coef) -> L ST -- sincosre(rs,rc,sc,dx,sign) == -- st1 : ST := (second sc) * dx -- st2 : ST := (first sc) * dx -- st2 := sign * st2 -- [lazyIntegrate(rs,st1),lazyIntegrate(rc,st2)] sincos z == empty? z => [0 :: ST,1 :: ST] l := (coef := frst z) = 0 => YS(sincosre(0,1,#1,deriv z,-1),2) TRANSFCN => YS(sincosre(sin coef,cos coef,#1,deriv z,-1),2) error concat("sincos: ",TRCONST) [first l,second l] sin z == sincos(z).sin cos z == sincos(z).cos tanre:(Coef,ST,ST,Coef) -> ST tanre(r,t,dx,sign) == lazyIntegrate(r,((1 :: ST) + sign*t*t)*dx) -- When the compiler had difficulties with the above definition, -- I did the following to help it: -- tanre:(Coef,ST,ST,Coef) -> ST -- tanre(r,t,dx,sign) == -- st1 : ST := t * t -- st1 := sign * st1 -- st2 : ST := 1 :: ST -- st1 := st2 + st1 -- st1 := st1 * dx -- lazyIntegrate(r,st1) tan z == empty? z => 0 :: ST (coef := frst z) = 0 => YS tanre(0,#1,deriv z,1) TRANSFCN => YS tanre(tan coef,#1,deriv z,1) error concat("tan: ",TRCONST) cotre:(Coef,ST,ST) -> ST cotre(r,t,dx) == lazyIntegrate(r,-((1 :: ST) + t*t)*dx) -- When the compiler had difficulties with the above definition, -- I did the following to help it: -- cotre:(Coef,ST,ST) -> ST -- cotre(r,t,dx) == -- st1 : ST := t * t -- st2 : ST := 1 :: ST -- st1 := st2 + st1 -- st1 := st1 * dx -- st1 := -st1 -- lazyIntegrate(r,st1) cot z == empty? z => error "cot: cot(0) is undefined" (coef := frst z) = 0 => error concat("cot: ",NPOWERS) TRANSFCN => YS cotre(cot coef,#1,deriv z) error concat("cot: ",TRCONST) sec z == empty? z => 1 :: ST frst z = 0 => recip(cos z) :: ST TRANSFCN => cosz := cos z first cosz = 0 => error concat("sec: ",NPOWERS) recip(cosz) :: ST error concat("sec: ",TRCONST) csc z == empty? z => error "csc: csc(0) is undefined" TRANSFCN => sinz := sin z first sinz = 0 => error concat("csc: ",NPOWERS) recip(sinz) :: ST error concat("csc: ",TRCONST) orderOrFailed : ST -> Union(I,"failed") orderOrFailed x == -- returns the order of x or "failed" -- if -1 is returned, the series is identically zero for n in 0..1000 repeat empty? x => return -1 not zero? frst x => return n :: I x := rst x "failed" asin z == empty? z => 0 :: ST (coef := frst z) = 0 => integrate(0,powern(-1/2,(1 :: ST) - z*z) * (deriv z)) TRANSFCN => coef = 1 or coef = -1 => x := (1 :: ST) - z*z -- compute order of 'x' (ord := orderOrFailed x) case "failed" => error concat("asin: ",MAYFPOW) (order := ord :: I) = -1 => return asin(coef) :: ST odd? order => error concat("asin: ",FPOWERS) squirt := powern(1/2,x) (quot := (deriv z) exquo squirt) case "failed" => error concat("asin: ",NOTINV) integrate(asin coef,quot :: ST) integrate(asin coef,powern(-1/2,(1 :: ST) - z*z) * (deriv z)) error concat("asin: ",TRCONST) acos z == empty? z => TRANSFCN => acos(0)$Coef :: ST error concat("acos: ",TRCONST) TRANSFCN => coef := frst z coef = 1 or coef = -1 => x := (1 :: ST) - z*z -- compute order of 'x' (ord := orderOrFailed x) case "failed" => error concat("acos: ",MAYFPOW) (order := ord :: I) = -1 => return acos(coef) :: ST odd? order => error concat("acos: ",FPOWERS) squirt := powern(1/2,x) (quot := (-deriv z) exquo squirt) case "failed" => error concat("acos: ",NOTINV) integrate(acos coef,quot :: ST) integrate(acos coef,-powern(-1/2,(1 :: ST) - z*z) * (deriv z)) error concat("acos: ",TRCONST) atan z == empty? z => 0 :: ST (coef := frst z) = 0 => integrate(0,(recip((1 :: ST) + z*z) :: ST) * (deriv z)) TRANSFCN => (y := recip((1 :: ST) + z*z)) case "failed" => error concat("atan: ",LOGS) integrate(atan coef,(y :: ST) * (deriv z)) error concat("atan: ",TRCONST) acot z == empty? z => TRANSFCN => acot(0)$Coef :: ST error concat("acot: ",TRCONST) TRANSFCN => (y := recip((1 :: ST) + z*z)) case "failed" => error concat("acot: ",LOGS) integrate(acot frst z,-(y :: ST) * (deriv z)) error concat("acot: ",TRCONST) asec z == empty? z => error "asec: constant coefficient should not be 0" TRANSFCN => (coef := frst z) = 0 => error "asec: constant coefficient should not be 0" coef = 1 or coef = -1 => x := z*z - (1 :: ST) -- compute order of 'x' (ord := orderOrFailed x) case "failed" => error concat("asec: ",MAYFPOW) (order := ord :: I) = -1 => return asec(coef) :: ST odd? order => error concat("asec: ",FPOWERS) squirt := powern(1/2,x) (quot := (deriv z) exquo squirt) case "failed" => error concat("asec: ",NOTINV) (quot2 := (quot :: ST) exquo z) case "failed" => error concat("asec: ",NOTINV) integrate(asec coef,quot2 :: ST) integrate(asec coef,(powern(-1/2,z*z-(1::ST))*(deriv z)) / z) error concat("asec: ",TRCONST) acsc z == empty? z => error "acsc: constant coefficient should not be zero" TRANSFCN => (coef := frst z) = 0 => error "acsc: constant coefficient should not be zero" coef = 1 or coef = -1 => x := z*z - (1 :: ST) -- compute order of 'x' (ord := orderOrFailed x) case "failed" => error concat("acsc: ",MAYFPOW) (order := ord :: I) = -1 => return acsc(coef) :: ST odd? order => error concat("acsc: ",FPOWERS) squirt := powern(1/2,x) (quot := (-deriv z) exquo squirt) case "failed" => error concat("acsc: ",NOTINV) (quot2 := (quot :: ST) exquo z) case "failed" => error concat("acsc: ",NOTINV) integrate(acsc coef,quot2 :: ST) integrate(acsc coef,-(powern(-1/2,z*z-(1::ST))*(deriv z)) / z) error concat("acsc: ",TRCONST) --% Hyperbolic Trigonometric Functions sinhcosh z == empty? z => [0 :: ST,1 :: ST] l := (coef := frst z) = 0 => YS(sincosre(0,1,#1,deriv z,1),2) TRANSFCN => YS(sincosre(sinh coef,cosh coef,#1,deriv z,1),2) error concat("sinhcosh: ",TRCONST) [first l,second l] sinh z == sinhcosh(z).sinh cosh z == sinhcosh(z).cosh tanh z == empty? z => 0 :: ST (coef := frst z) = 0 => YS tanre(0,#1,deriv z,-1) TRANSFCN => YS tanre(tanh coef,#1,deriv z,-1) error concat("tanh: ",TRCONST) coth z == tanhz := tanh z empty? tanhz => error "coth: coth(0) is undefined" (frst tanhz) = 0 => error concat("coth: ",NPOWERS) recip(tanhz) :: ST sech z == coshz := cosh z (empty? coshz) or (frst coshz = 0) => error concat("sech: ",NPOWERS) recip(coshz) :: ST csch z == sinhz := sinh z (empty? sinhz) or (frst sinhz = 0) => error concat("csch: ",NPOWERS) recip(sinhz) :: ST asinh z == empty? z => 0 :: ST (coef := frst z) = 0 => log(z + powern(1/2,(1 :: ST) + z*z)) TRANSFCN => x := (1 :: ST) + z*z -- compute order of 'x', in case coefficient(z,0) = +- %i (ord := orderOrFailed x) case "failed" => error concat("asinh: ",MAYFPOW) (order := ord :: I) = -1 => return asinh(coef) :: ST odd? order => error concat("asinh: ",FPOWERS) -- the argument to 'log' must have a non-zero constant term log(z + powern(1/2,x)) error concat("asinh: ",TRCONST) acosh z == empty? z => TRANSFCN => acosh(0)$Coef :: ST error concat("acosh: ",TRCONST) TRANSFCN => coef := frst z coef = 1 or coef = -1 => x := z*z - (1 :: ST) -- compute order of 'x' (ord := orderOrFailed x) case "failed" => error concat("acosh: ",MAYFPOW) (order := ord :: I) = -1 => return acosh(coef) :: ST odd? order => error concat("acosh: ",FPOWERS) -- the argument to 'log' must have a non-zero constant term log(z + powern(1/2,x)) log(z + powern(1/2,z*z - (1 :: ST))) error concat("acosh: ",TRCONST) atanh z == empty? z => 0 :: ST (coef := frst z) = 0 => (inv(2::RN)::Coef) * log(((1 :: ST) + z)/((1 :: ST) - z)) TRANSFCN => coef = 1 or coef = -1 => error concat("atanh: ",LOGS) (inv(2::RN)::Coef) * log(((1 :: ST) + z)/((1 :: ST) - z)) error concat("atanh: ",TRCONST) acoth z == empty? z => TRANSFCN => acoth(0)$Coef :: ST error concat("acoth: ",TRCONST) TRANSFCN => frst z = 1 or frst z = -1 => error concat("acoth: ",LOGS) (inv(2::RN)::Coef) * log((z + (1 :: ST))/(z - (1 :: ST))) error concat("acoth: ",TRCONST) asech z == empty? z => error "asech: asech(0) is undefined" TRANSFCN => (coef := frst z) = 0 => error concat("asech: ",NPOWLOG) coef = 1 or coef = -1 => x := (1 :: ST) - z*z -- compute order of 'x' (ord := orderOrFailed x) case "failed" => error concat("asech: ",MAYFPOW) (order := ord :: I) = -1 => return asech(coef) :: ST odd? order => error concat("asech: ",FPOWERS) log(((1 :: ST) + powern(1/2,x))/z) log(((1 :: ST) + powern(1/2,(1 :: ST) - z*z))/z) error concat("asech: ",TRCONST) acsch z == empty? z => error "acsch: acsch(0) is undefined" TRANSFCN => frst z = 0 => error concat("acsch: ",NPOWLOG) x := z*z + (1 :: ST) -- compute order of 'x' (ord := orderOrFailed x) case "failed" => error concat("acsc: ",MAYFPOW) (order := ord :: I) = -1 => return acsch(frst z) :: ST odd? order => error concat("acsch: ",FPOWERS) log(((1 :: ST) + powern(1/2,x))/z) error concat("acsch: ",TRCONST) @ \section{package STTFNC StreamTranscendentalFunctionsNonCommutative} <<package STTFNC StreamTranscendentalFunctionsNonCommutative>>= )abbrev package STTFNC StreamTranscendentalFunctionsNonCommutative ++ Author: Clifton J. Williamson ++ Date Created: 26 May 1994 ++ Date Last Updated: 26 May 1994 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: Taylor series, transcendental function, non-commutative ++ Examples: ++ References: ++ Description: ++ StreamTranscendentalFunctionsNonCommutative implements transcendental ++ functions on Taylor series over a non-commutative ring, where a Taylor ++ series is represented by a stream of its coefficients. StreamTranscendentalFunctionsNonCommutative(Coef): _ Exports == Implementation where Coef : Algebra Fraction Integer I ==> Integer SG ==> String ST ==> Stream Coef STTF ==> StreamTranscendentalFunctions Coef Exports ==> with --% Exponentials and Logarithms exp : ST -> ST ++ exp(st) computes the exponential of a power series st. log : ST -> ST ++ log(st) computes the log of a power series. ** : (ST,ST) -> ST ++ st1 ** st2 computes the power of a power series st1 by another ++ power series st2. --% TrigonometricFunctionCategory sin : ST -> ST ++ sin(st) computes sine of a power series st. cos : ST -> ST ++ cos(st) computes cosine of a power series st. tan : ST -> ST ++ tan(st) computes tangent of a power series st. cot : ST -> ST ++ cot(st) computes cotangent of a power series st. sec : ST -> ST ++ sec(st) computes secant of a power series st. csc : ST -> ST ++ csc(st) computes cosecant of a power series st. asin : ST -> ST ++ asin(st) computes arcsine of a power series st. acos : ST -> ST ++ acos(st) computes arccosine of a power series st. atan : ST -> ST ++ atan(st) computes arctangent of a power series st. acot : ST -> ST ++ acot(st) computes arccotangent of a power series st. asec : ST -> ST ++ asec(st) computes arcsecant of a power series st. acsc : ST -> ST ++ acsc(st) computes arccosecant of a power series st. --% HyperbloicTrigonometricFunctionCategory sinh : ST -> ST ++ sinh(st) computes the hyperbolic sine of a power series st. cosh : ST -> ST ++ cosh(st) computes the hyperbolic cosine of a power series st. tanh : ST -> ST ++ tanh(st) computes the hyperbolic tangent of a power series st. coth : ST -> ST ++ coth(st) computes the hyperbolic cotangent of a power series st. sech : ST -> ST ++ sech(st) computes the hyperbolic secant of a power series st. csch : ST -> ST ++ csch(st) computes the hyperbolic cosecant of a power series st. asinh : ST -> ST ++ asinh(st) computes the inverse hyperbolic sine of a power series st. acosh : ST -> ST ++ acosh(st) computes the inverse hyperbolic cosine ++ of a power series st. atanh : ST -> ST ++ atanh(st) computes the inverse hyperbolic tangent ++ of a power series st. acoth : ST -> ST ++ acoth(st) computes the inverse hyperbolic ++ cotangent of a power series st. asech : ST -> ST ++ asech(st) computes the inverse hyperbolic secant of a ++ power series st. acsch : ST -> ST ++ acsch(st) computes the inverse hyperbolic ++ cosecant of a power series st. Implementation ==> add import StreamTaylorSeriesOperations(Coef) --% Error Reporting ZERO : SG := "series must have constant coefficient zero" ONE : SG := "series must have constant coefficient one" NPOWERS : SG := "series expansion has terms of negative degree" --% Exponentials and Logarithms exp z == empty? z => 1 :: ST (frst z) = 0 => expx := exp(monom(1,1))$STTF compose(expx,z) error concat("exp: ",ZERO) log z == empty? z => error concat("log: ",ONE) (frst z) = 1 => log1PlusX := log(monom(1,0) + monom(1,1))$STTF compose(log1PlusX,z - monom(1,0)) error concat("log: ",ONE) (z1:ST) ** (z2:ST) == exp(log(z1) * z2) --% Trigonometric Functions sin z == empty? z => 0 :: ST (frst z) = 0 => sinx := sin(monom(1,1))$STTF compose(sinx,z) error concat("sin: ",ZERO) cos z == empty? z => 1 :: ST (frst z) = 0 => cosx := cos(monom(1,1))$STTF compose(cosx,z) error concat("cos: ",ZERO) tan z == empty? z => 0 :: ST (frst z) = 0 => tanx := tan(monom(1,1))$STTF compose(tanx,z) error concat("tan: ",ZERO) cot z == empty? z => error "cot: cot(0) is undefined" (frst z) = 0 => error concat("cot: ",NPOWERS) error concat("cot: ",ZERO) sec z == empty? z => 1 :: ST (frst z) = 0 => secx := sec(monom(1,1))$STTF compose(secx,z) error concat("sec: ",ZERO) csc z == empty? z => error "csc: csc(0) is undefined" (frst z) = 0 => error concat("csc: ",NPOWERS) error concat("csc: ",ZERO) asin z == empty? z => 0 :: ST (frst z) = 0 => asinx := asin(monom(1,1))$STTF compose(asinx,z) error concat("asin: ",ZERO) atan z == empty? z => 0 :: ST (frst z) = 0 => atanx := atan(monom(1,1))$STTF compose(atanx,z) error concat("atan: ",ZERO) acos z == error "acos: acos undefined on this coefficient domain" acot z == error "acot: acot undefined on this coefficient domain" asec z == error "asec: asec undefined on this coefficient domain" acsc z == error "acsc: acsc undefined on this coefficient domain" --% Hyperbolic Trigonometric Functions sinh z == empty? z => 0 :: ST (frst z) = 0 => sinhx := sinh(monom(1,1))$STTF compose(sinhx,z) error concat("sinh: ",ZERO) cosh z == empty? z => 1 :: ST (frst z) = 0 => coshx := cosh(monom(1,1))$STTF compose(coshx,z) error concat("cosh: ",ZERO) tanh z == empty? z => 0 :: ST (frst z) = 0 => tanhx := tanh(monom(1,1))$STTF compose(tanhx,z) error concat("tanh: ",ZERO) coth z == empty? z => error "coth: coth(0) is undefined" (frst z) = 0 => error concat("coth: ",NPOWERS) error concat("coth: ",ZERO) sech z == empty? z => 1 :: ST (frst z) = 0 => sechx := sech(monom(1,1))$STTF compose(sechx,z) error concat("sech: ",ZERO) csch z == empty? z => error "csch: csch(0) is undefined" (frst z) = 0 => error concat("csch: ",NPOWERS) error concat("csch: ",ZERO) asinh z == empty? z => 0 :: ST (frst z) = 0 => asinhx := asinh(monom(1,1))$STTF compose(asinhx,z) error concat("asinh: ",ZERO) atanh z == empty? z => 0 :: ST (frst z) = 0 => atanhx := atanh(monom(1,1))$STTF compose(atanhx,z) error concat("atanh: ",ZERO) acosh z == error "acosh: acosh undefined on this coefficient domain" acoth z == error "acoth: acoth undefined on this coefficient domain" asech z == error "asech: asech undefined on this coefficient domain" acsch z == error "acsch: acsch undefined on this coefficient domain" @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package STTF StreamTranscendentalFunctions>> <<package STTFNC StreamTranscendentalFunctionsNonCommutative>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}