\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra solvelin.spad} \author{Patrizia Gianni, Stephen M. Watt, Robert Sutor} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package LSMP LinearSystemMatrixPackage} <<package LSMP LinearSystemMatrixPackage>>= )abbrev package LSMP LinearSystemMatrixPackage ++ Author: P.Gianni, S.Watt ++ Date Created: Summer 1985 ++ Date Last Updated:Summer 1990 ++ Basic Functions: solve, particularSolution, hasSolution?, rank ++ Related Constructors: LinearSystemMatrixPackage1 ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package solves linear system in the matrix form \spad{AX = B}. LinearSystemMatrixPackage(F, Row, Col, M): Cat == Capsule where F: Field Row: FiniteLinearAggregate F with shallowlyMutable Col: FiniteLinearAggregate F with shallowlyMutable M : MatrixCategory(F, Row, Col) N ==> NonNegativeInteger PartialV ==> Union(Col, "failed") Both ==> Record(particular: PartialV, basis: List Col) Cat ==> with solve : (M, Col) -> Both ++ solve(A,B) finds a particular solution of the system \spad{AX = B} ++ and a basis of the associated homogeneous system \spad{AX = 0}. solve : (M, List Col) -> List Both ++ solve(A,LB) finds a particular soln of the systems \spad{AX = B} ++ and a basis of the associated homogeneous systems \spad{AX = 0} ++ where B varies in the list of column vectors LB. particularSolution: (M, Col) -> PartialV ++ particularSolution(A,B) finds a particular solution of the linear ++ system \spad{AX = B}. hasSolution?: (M, Col) -> Boolean ++ hasSolution?(A,B) tests if the linear system \spad{AX = B} ++ has a solution. rank : (M, Col) -> N ++ rank(A,B) computes the rank of the complete matrix \spad{(A|B)} ++ of the linear system \spad{AX = B}. Capsule ==> add systemMatrix : (M, Col) -> M aSolution : M -> PartialV -- rank theorem hasSolution?(A, b) == rank A = rank systemMatrix(A, b) systemMatrix(m, v) == horizConcat(m, -(v::M)) rank(A, b) == rank systemMatrix(A, b) particularSolution(A, b) == aSolution rowEchelon systemMatrix(A,b) -- m should be in row-echelon form. -- last column of m is -(right-hand-side of system) aSolution m == nvar := (ncols m - 1)::N rk := maxRowIndex m while (rk >= minRowIndex m) and every?(zero?, row(m, rk)) repeat rk := dec rk rk < minRowIndex m => new(nvar, 0) ck := minColIndex m while (ck < maxColIndex m) and zero? qelt(m, rk, ck) repeat ck := inc ck ck = maxColIndex m => "failed" sol := new(nvar, 0)$Col -- find leading elements of diagonal v := new(nvar, minRowIndex m - 1)$PrimitiveArray(Integer) for i in minRowIndex m .. rk repeat for j in 0.. while zero? qelt(m, i, j+minColIndex m) repeat 0 v.j := i for j in 0..nvar-1 repeat if v.j >= minRowIndex m then qsetelt_!(sol, j+minIndex sol, - qelt(m, v.j, maxColIndex m)) sol solve(A:M, b:Col) == -- Special case for homogeneous systems. every?(zero?, b) => [new(ncols A, 0), nullSpace A] -- General case. m := rowEchelon systemMatrix(A, b) [aSolution m, nullSpace subMatrix(m, minRowIndex m, maxRowIndex m, minColIndex m, maxColIndex m - 1)] solve(A:M, l:List Col) == null l => [[new(ncols A, 0), nullSpace A]] nl := (sol0 := solve(A, first l)).basis cons(sol0, [[aSolution rowEchelon systemMatrix(A, b), nl] for b in rest l]) @ \section{package LSMP1 LinearSystemMatrixPackage1} <<package LSMP1 LinearSystemMatrixPackage1>>= )abbrev package LSMP1 LinearSystemMatrixPackage1 ++ Author: R. Sutor ++ Date Created: June, 1994 ++ Date Last Updated: ++ Basic Functions: solve, particularSolution, hasSolution?, rank ++ Related Constructors: LinearSystemMatrixPackage ++ Also See: ++ AMS Classifications: ++ Keywords: solve ++ References: ++ Description: ++ This package solves linear system in the matrix form \spad{AX = B}. ++ It is essentially a particular instantiation of the package ++ \spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This ++ package's existence makes it easier to use \spadfun{solve} in the ++ AXIOM interpreter. LinearSystemMatrixPackage1(F): Cat == Capsule where F: Field Row ==> Vector F Col ==> Vector F M ==> Matrix(F) LL ==> List List F N ==> NonNegativeInteger PartialV ==> Union(Col, "failed") Both ==> Record(particular: PartialV, basis: List Col) LSMP ==> LinearSystemMatrixPackage(F, Row, Col, M) Cat ==> with solve : (M, Col) -> Both ++ solve(A,B) finds a particular solution of the system \spad{AX = B} ++ and a basis of the associated homogeneous system \spad{AX = 0}. solve : (LL, Col) -> Both ++ solve(A,B) finds a particular solution of the system \spad{AX = B} ++ and a basis of the associated homogeneous system \spad{AX = 0}. solve : (M, List Col) -> List Both ++ solve(A,LB) finds a particular soln of the systems \spad{AX = B} ++ and a basis of the associated homogeneous systems \spad{AX = 0} ++ where B varies in the list of column vectors LB. solve : (LL, List Col) -> List Both ++ solve(A,LB) finds a particular soln of the systems \spad{AX = B} ++ and a basis of the associated homogeneous systems \spad{AX = 0} ++ where B varies in the list of column vectors LB. particularSolution: (M, Col) -> PartialV ++ particularSolution(A,B) finds a particular solution of the linear ++ system \spad{AX = B}. hasSolution?: (M, Col) -> Boolean ++ hasSolution?(A,B) tests if the linear system \spad{AX = B} ++ has a solution. rank : (M, Col) -> N ++ rank(A,B) computes the rank of the complete matrix \spad{(A|B)} ++ of the linear system \spad{AX = B}. Capsule ==> add solve(m : M, c: Col): Both == solve(m,c)$LSMP solve(ll : LL, c: Col): Both == solve(matrix(ll)$M,c)$LSMP solve(m : M, l : List Col): List Both == solve(m, l)$LSMP solve(ll : LL, l : List Col): List Both == solve(matrix(ll)$M, l)$LSMP particularSolution (m : M, c : Col): PartialV == particularSolution(m, c)$LSMP hasSolution?(m :M, c : Col): Boolean == hasSolution?(m, c)$LSMP rank(m : M, c : Col): N == rank(m, c)$LSMP @ \section{package LSPP LinearSystemPolynomialPackage} <<package LSPP LinearSystemPolynomialPackage>>= )abbrev package LSPP LinearSystemPolynomialPackage ++ Author: P.Gianni ++ Date Created: Summer 1985 ++ Date Last Updated: Summer 1993 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: SystemSolvePackage ++ Description: ++ this package finds the solutions of linear systems presented as a ++ list of polynomials. LinearSystemPolynomialPackage(R, E, OV, P): Cat == Capsule where R : IntegralDomain OV : OrderedSet E : OrderedAbelianMonoidSup P : PolynomialCategory(R,E,OV) F ==> Fraction P NNI ==> NonNegativeInteger V ==> Vector M ==> Matrix Soln ==> Record(particular: Union(V F, "failed"), basis: List V F) Cat == with linSolve: (List P, List OV) -> Soln ++ linSolve(lp,lvar) finds the solutions of the linear system ++ of polynomials lp = 0 with respect to the list of symbols lvar. Capsule == add ---- Local Functions ---- poly2vect: (P, List OV) -> Record(coefvec: V F, reductum: F) intoMatrix: (List P, List OV) -> Record(mat: M F, vec: V F) poly2vect(p : P, vs : List OV) : Record(coefvec: V F, reductum: F) == coefs := new(#vs, 0)$(V F) for v in vs for i in 1.. while p ^= 0 repeat u := univariate(p, v) degree u = 0 => "next v" coefs.i := (c := leadingCoefficient u)::F p := p - monomial(c,v, 1) [coefs, p :: F] intoMatrix(ps : List P, vs : List OV ) : Record(mat: M F, vec: V F) == m := zero(#ps, #vs)$M(F) v := new(#ps, 0)$V(F) for p in ps for i in 1.. repeat totalDegree(p,vs) > 1 => error "The system is not linear" r := poly2vect(p,vs) m:=setRow_!(m,i,r.coefvec) v.i := - r.reductum [m, v] linSolve(ps, vs) == r := intoMatrix(ps, vs) solve(r.mat, r.vec)$LinearSystemMatrixPackage(F,V F,V F,M F) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package LSMP LinearSystemMatrixPackage>> <<package LSMP1 LinearSystemMatrixPackage1>> <<package LSPP LinearSystemPolynomialPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}