\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra solvedio.spad} \author{Albrecht Fortenbacher} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package DIOSP DiophantineSolutionPackage} <<package DIOSP DiophantineSolutionPackage>>= )abbrev package DIOSP DiophantineSolutionPackage ++ Author: A. Fortenbacher ++ Date Created: 29 March 1991 ++ Date Last Updated: 29 March 1991 ++ Basic Operations: dioSolve ++ Related Constructors: Equation, Vector ++ Also See: ++ AMS Classifications: ++ Keywords: Diophantine equation, nonnegative solutions, ++ basis, depth-first-search ++ Reference: ++ M. Clausen, A. Fortenbacher: Efficient Solution of ++ Linear Diophantine Equations. in JSC (1989) 8, 201-216 ++ Description: ++ any solution of a homogeneous linear Diophantine equation ++ can be represented as a sum of minimal solutions, which ++ form a "basis" (a minimal solution cannot be represented ++ as a nontrivial sum of solutions) ++ in the case of an inhomogeneous linear Diophantine equation, ++ each solution is the sum of a inhomogeneous solution and ++ any number of homogeneous solutions ++ therefore, it suffices to compute two sets: ++ 1. all minimal inhomogeneous solutions ++ 2. all minimal homogeneous solutions ++ the algorithm implemented is a completion procedure, which ++ enumerates all solutions in a recursive depth-first-search ++ it can be seen as finding monotone paths in a graph ++ for more details see Reference DiophantineSolutionPackage(): Cat == Capsule where B ==> Boolean I ==> Integer NI ==> NonNegativeInteger LI ==> List(I) VI ==> Vector(I) VNI ==> Vector(NI) POLI ==> Polynomial(I) EPOLI ==> Equation(POLI) LPOLI ==> List(POLI) S ==> Symbol LS ==> List(S) ListSol ==> List(VNI) Solutions ==> Record(varOrder: LS, inhom: Union(ListSol,"failed"), hom: ListSol) Node ==> Record(vert: VI, free: B) Graph ==> Record(vn: Vector(Node), dim : NI, zeroNode: I) Cat ==> with dioSolve: EPOLI -> Solutions ++ dioSolve(u) computes a basis of all minimal solutions for ++ linear homogeneous Diophantine equation u, ++ then all minimal solutions of inhomogeneous equation Capsule ==> add import I import POLI -- local function specifications initializeGraph: (LPOLI, I) -> Graph createNode: (I, VI, NI, I) -> Node findSolutions: (VNI, I, I, I, Graph, B) -> ListSol verifyMinimality: (VNI, Graph, B) -> B verifySolution: (VNI, I, I, I, Graph) -> B -- exported functions dioSolve(eq) == p := lhs(eq) - rhs(eq) n := totalDegree(p) n = 0 or n > 1 => error "a linear Diophantine equation is expected" mon := empty()$LPOLI c : I := 0 for x in monomials(p) repeat ground?(x) => c := ground(x) :: I mon := cons(x, mon)$LPOLI graph := initializeGraph(mon, c) sol := zero(graph.dim)$VNI hs := findSolutions(sol, graph.zeroNode, 1, 1, graph, true) ihs : ListSol := c = 0 => [sol] findSolutions(sol, graph.zeroNode + c, 1, 1, graph, false) vars := [first(variables(x))$LS for x in mon] [vars, if empty?(ihs)$ListSol then "failed" else ihs, hs] -- local functions initializeGraph(mon, c) == coeffs := vector([first(coefficients(x))$LI for x in mon])$VI k := #coeffs m := min(c, reduce(min, coeffs)$VI) n := max(c, reduce(max, coeffs)$VI) [[createNode(i, coeffs, k, 1 - m) for i in m..n], k, 1 - m] createNode(ind, coeffs, k, zeroNode) == -- create vertices from node ind to other nodes v := zero(k)$VI for i in 1..k repeat positive? ind => negative? coeffs.i => v.i := zeroNode + ind + coeffs.i positive? coeffs.i => v.i := zeroNode + ind + coeffs.i [v, true] findSolutions(sol, ind, m, n, graph, flag) == -- return all solutions (paths) from node ind to node zeroNode sols := empty()$ListSol node := graph.vn.ind node.free => node.free := false v := node.vert k := if ind < graph.zeroNode then m else n for i in k..graph.dim repeat x := sol.i positive? v.i => -- vertex exists to other node sol.i := x + 1 v.i = graph.zeroNode => -- solution found verifyMinimality(sol, graph, flag) => sols := cons(copy(sol)$VNI, sols)$ListSol sol.i := x sol.i := x s := ind < graph.zeroNode => findSolutions(sol, v.i, i, n, graph, flag) findSolutions(sol, v.i, m, i, graph, flag) sols := append(s, sols)$ListSol sol.i := x node.free := true sols sols verifyMinimality(sol, graph, flag) == -- test whether sol contains a minimal homogeneous solution flag => -- sol is a homogeneous solution i := 1 while sol.i = 0 repeat i := i + 1 x := sol.i sol.i := (x - 1) :: NI flag := verifySolution(sol, graph.zeroNode, 1, 1, graph) sol.i := x flag verifySolution(sol, graph.zeroNode, 1, 1, graph) verifySolution(sol, ind, m, n, graph) == -- test whether sol contains a path from ind to zeroNode flag := true node := graph.vn.ind v := node.vert k := if ind < graph.zeroNode then m else n for i in k..graph.dim while flag repeat x := sol.i positive? x and positive? v.i => -- vertex exists to other node sol.i := (x - 1) :: NI v.i = graph.zeroNode => -- solution found flag := false sol.i := x flag := ind < graph.zeroNode => verifySolution(sol, v.i, i, n, graph) verifySolution(sol, v.i, m, i, graph) sol.i := x flag @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package DIOSP DiophantineSolutionPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}