\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra solvedio.spad}
\author{Albrecht Fortenbacher}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package DIOSP DiophantineSolutionPackage}
<<package DIOSP DiophantineSolutionPackage>>=
)abbrev package DIOSP DiophantineSolutionPackage
++ Author: A. Fortenbacher
++ Date Created: 29 March 1991
++ Date Last Updated: 29 March 1991
++ Basic Operations: dioSolve
++ Related Constructors: Equation, Vector
++ Also See:
++ AMS Classifications:
++ Keywords: Diophantine equation, nonnegative solutions,
++   basis, depth-first-search
++ Reference:
++   M. Clausen, A. Fortenbacher: Efficient Solution of
++   Linear Diophantine Equations. in JSC (1989) 8, 201-216
++ Description:
++   any solution of a homogeneous linear Diophantine equation
++   can be represented as a sum of minimal solutions, which
++   form a "basis" (a minimal solution cannot be represented
++   as a nontrivial sum of solutions)
++   in the case of an inhomogeneous linear Diophantine equation,
++   each solution is the sum of a inhomogeneous solution and
++   any number of homogeneous solutions
++   therefore, it suffices to compute two sets:
++      1. all minimal inhomogeneous solutions
++      2. all minimal homogeneous solutions
++   the algorithm implemented is a completion procedure, which
++   enumerates all solutions in a recursive depth-first-search
++   it can be seen as finding monotone paths in a graph
++   for more details see Reference
 
DiophantineSolutionPackage(): Cat == Capsule where
 
  B ==> Boolean
  I ==> Integer
  NI ==> NonNegativeInteger
 
  LI ==> List(I)
  VI ==> Vector(I)
  VNI ==> Vector(NI)
 
  POLI ==> Polynomial(I)
  EPOLI ==> Equation(POLI)
  LPOLI ==> List(POLI)
 
  S ==> Symbol
  LS ==> List(S)
 
  ListSol ==> List(VNI)
  Solutions ==> Record(varOrder: LS, inhom: Union(ListSol,"failed"),
                       hom: ListSol)
 
  Node ==> Record(vert: VI, free: B)
  Graph ==> Record(vn: Vector(Node), dim : NI, zeroNode: I)
 
  Cat ==> with
 
    dioSolve: EPOLI -> Solutions
      ++ dioSolve(u) computes a basis of all minimal solutions for 
      ++ linear homogeneous Diophantine equation u,
      ++ then all minimal solutions of inhomogeneous equation
 
  Capsule ==> add
 
    import I
    import POLI
 
    -- local function specifications
 
    initializeGraph: (LPOLI, I) -> Graph
    createNode: (I, VI, NI, I) -> Node
    findSolutions: (VNI, I, I, I, Graph, B) -> ListSol
    verifyMinimality: (VNI, Graph, B) -> B
    verifySolution: (VNI, I, I, I, Graph) -> B
 
    -- exported functions
 
    dioSolve(eq) ==
      p := lhs(eq) - rhs(eq)
      n := totalDegree(p)
      n = 0 or n > 1 =>
        error "a linear Diophantine equation is expected"
      mon := empty()$LPOLI
      c : I := 0
      for x in monomials(p) repeat
        ground?(x) =>
          c := ground(x) :: I
        mon := cons(x, mon)$LPOLI
      graph := initializeGraph(mon, c)
      sol := zero(graph.dim)$VNI
      hs := findSolutions(sol, graph.zeroNode, 1, 1, graph, true)
      ihs : ListSol :=
        c = 0 => [sol]
        findSolutions(sol, graph.zeroNode + c, 1, 1, graph, false)
      vars := [first(variables(x))$LS for x in mon]
      [vars, if empty?(ihs)$ListSol then "failed" else ihs, hs]
 
    -- local functions
 
    initializeGraph(mon, c) ==
      coeffs := vector([first(coefficients(x))$LI for x in mon])$VI
      k := #coeffs
      m := min(c, reduce(min, coeffs)$VI)
      n := max(c, reduce(max, coeffs)$VI)
      [[createNode(i, coeffs, k, 1 - m) for i in m..n], k, 1 - m]
 
    createNode(ind, coeffs, k, zeroNode) ==
      -- create vertices from node ind to other nodes
      v := zero(k)$VI
      for i in 1..k repeat
        positive? ind =>
          negative? coeffs.i =>
            v.i := zeroNode + ind + coeffs.i
        positive? coeffs.i =>
          v.i := zeroNode + ind + coeffs.i
      [v, true]
 
    findSolutions(sol, ind, m, n, graph, flag) ==
      -- return all solutions (paths) from node ind to node zeroNode
      sols := empty()$ListSol
      node := graph.vn.ind
      node.free =>
        node.free := false
        v := node.vert
        k := if ind < graph.zeroNode then m else n
        for i in k..graph.dim repeat
          x := sol.i
          positive? v.i =>  -- vertex exists to other node
            sol.i := x + 1
            v.i = graph.zeroNode =>  -- solution found
              verifyMinimality(sol, graph, flag) =>
                sols := cons(copy(sol)$VNI, sols)$ListSol
                sol.i := x
              sol.i := x
            s :=
              ind < graph.zeroNode =>
                findSolutions(sol, v.i, i, n, graph, flag)
              findSolutions(sol, v.i, m, i, graph, flag)
            sols := append(s, sols)$ListSol
            sol.i := x
        node.free := true
        sols
      sols
 
    verifyMinimality(sol, graph, flag) ==
      -- test whether sol contains a minimal homogeneous solution
      flag =>  -- sol is a homogeneous solution
        i := 1
        while sol.i = 0 repeat
          i := i + 1
        x := sol.i
        sol.i := (x - 1) :: NI
        flag := verifySolution(sol, graph.zeroNode, 1, 1, graph)
        sol.i := x
        flag
      verifySolution(sol, graph.zeroNode, 1, 1, graph)
 
    verifySolution(sol, ind, m, n, graph) ==
      -- test whether sol contains a path from ind to zeroNode
      flag := true
      node := graph.vn.ind
      v := node.vert
      k := if ind < graph.zeroNode then m else n
      for i in k..graph.dim while flag repeat
        x := sol.i
        positive? x and positive? v.i =>  -- vertex exists to other node
          sol.i := (x - 1) :: NI
          v.i = graph.zeroNode =>  -- solution found
            flag := false
            sol.i := x
          flag :=
            ind < graph.zeroNode =>
              verifySolution(sol, v.i, i, n, graph)
            verifySolution(sol, v.i, m, i, graph)
          sol.i := x
      flag

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
 
<<package DIOSP DiophantineSolutionPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}