\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra smith.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package SMITH SmithNormalForm}
<<package SMITH SmithNormalForm>>=
)abbrev package SMITH SmithNormalForm
++ Author: Patrizia Gianni
++ Date Created: October 1992
++ Date Last Updated: 
++ Basic Operations:
++ Related Domains: Matrix(R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, canonical forms, linear algebra
++ Examples:
++ References:
++ Description:
++   \spadtype{SmithNormalForm} is a package
++   which provides some standard canonical forms for matrices.

SmithNormalForm(R,Row,Col,M) : Exports == Implementation where

  R   : EuclideanDomain
  Row : FiniteLinearAggregate R
  Col : FiniteLinearAggregate R
  M   : MatrixCategory(R,Row,Col)

  I            ==> Integer
  NNI          ==> NonNegativeInteger
  HermiteForm  ==>   Record(Hermite:M,eqMat:M)
  SmithForm    ==>   Record(Smith : M, leftEqMat : M, rightEqMat : M) 
  PartialV     ==> Union(Col, "failed")
  Both         ==> Record(particular: PartialV, basis: List Col)

  Exports ==  with
    hermite : M -> M
      ++ \spad{hermite(m)} returns the Hermite normal form of the
      ++ matrix m.
    completeHermite : M -> HermiteForm
      ++ \spad{completeHermite} returns a record  that contains
      ++ the Hermite normal form H of the matrix and the equivalence matrix
      ++ U such that U*m = H
    smith : M -> M
      ++ \spad{smith(m)} returns the Smith Normal form of the matrix m.
    completeSmith : M ->  SmithForm
      ++ \spad{completeSmith} returns a record  that contains
      ++ the Smith normal form H of the matrix and the left and right
      ++ equivalence matrices U and V such that U*m*v = H
    diophantineSystem : (M,Col) -> Both
      ++ \spad{diophantineSystem(A,B)} returns a particular integer solution and 
      ++ an integer  basis  of the equation \spad{AX = B}.

  Implementation == add
    MATCAT1 ==> MatrixCategoryFunctions2(R,Row,Col,M,QF,Row2,Col2,M2)
    MATCAT2 ==> MatrixCategoryFunctions2(QF,Row2,Col2,M2,R,Row,Col,M)
    QF      ==> Fraction R
    Row2    ==> Vector QF
    Col2    ==> Vector QF
    M2      ==> Matrix QF

                 ------  Local Functions -----
    elRow1       :   (M,I,I)         ->  M
    elRow2       :  (M,R,I,I)        ->  M
    elColumn2    :  (M,R,I,I)        ->  M
    isDiagonal?  :      M            ->  Boolean
    ijDivide     : (SmithForm ,I,I)  ->  SmithForm 
    lastStep     :   SmithForm       ->  SmithForm
    test1        :  (M,Col,NNI)      ->  Union(NNI, "failed")
    test2        : (M, Col,NNI,NNI)  ->  Union( Col, "failed")

     -- inconsistent system : case  0 = c -- 
    test1(sm:M,b:Col,m1 : NNI) : Union(NNI , "failed") ==
      km:=m1
      while zero? sm(km,km) repeat
        if not zero?(b(km)) then return "failed"
        km:= (km - 1) :: NNI
      km

    if Col has shallowlyMutable then

      test2(sm : M ,b : Col, n1:NNI,dk:NNI) : Union( Col, "failed") ==
        -- test divisibility --
        sol:Col := new(n1,0)
        for k in 1..dk repeat
          if (c:=(b(k) exquo sm(k,k))) case "failed" then return "failed"
          sol(k):= c::R
        sol

     -- test if the matrix is diagonal or pseudo-diagonal --   
    isDiagonal?(m : M) : Boolean ==
      m1:= nrows m
      n1:= ncols m
      for i in 1..m1 repeat
        for j in 1..n1 | (j ~= i) repeat
          if  not zero?(m(i,j)) then return false
      true
 
       -- elementary operation of first kind: exchange two rows --
    elRow1(m:M,i:I,j:I) : M ==
      vec:=row(m,i)
      setRow!(m,i,row(m,j))
      setRow!(m,j,vec)
      m

             -- elementary operation of second kind: add to row i--
                         -- a*row j  (i~=j) --
    elRow2(m : M,a:R,i:I,j:I) : M ==
      vec:= map(a*#1,row(m,j))
      vec:=map("+",row(m,i),vec)
      setRow!(m,i,vec)
      m
             -- elementary operation of second kind: add to column i --
                           -- a*column j (i~=j) --
    elColumn2(m : M,a:R,i:I,j:I) : M ==
      vec:= map(a*#1,column(m,j))
      vec:=map("+",column(m,i),vec)
      setColumn!(m,i,vec)
      m

       -- modify SmithForm in such a way that the term m(i,i) --
           -- divides the term m(j,j). m is diagonal --
    ijDivide(sf : SmithForm , i : I,j : I) : SmithForm ==
      m:=sf.Smith
      mii:=m(i,i)
      mjj:=m(j,j)
      extGcd:=extendedEuclidean(mii,mjj)
      d := extGcd.generator
      mii:=(mii exquo d)::R
      mjj := (mjj exquo d) :: R
      -- add to row j extGcd.coef1*row i --
      lMat:=elRow2(sf.leftEqMat,extGcd.coef1,j,i)
      -- switch rows i and j --
      lMat:=elRow1(lMat,i,j)
      -- add to row j -mii*row i --
      lMat := elRow2(lMat,-mii,j,i)
--      lMat := ijModify(mii,mjj,extGcd.coef1,extGcd.coef2,sf.leftEqMat,i,j)
      m(j,j):= m(i,i) * mjj
      m(i,i):= d
      -- add to column i extGcd.coef2 * column j --
      rMat := elColumn2(sf.rightEqMat,extGcd.coef2,i,j)
      -- add to column j -mjj*column i --
      rMat:=elColumn2(rMat,-mjj,j,i)
      -- multiply by -1 column j --
      setColumn!(rMat,j,map(-1 * #1,column(rMat,j)))
      [m,lMat,rMat]
               

     -- given a diagonal matrix compute its Smith form --
    lastStep(sf : SmithForm) : SmithForm ==
      m:=sf.Smith
      m1:=min(nrows m,ncols m)
      for i in 1..m1 while not zero?(mii:=m(i,i)) repeat
        for j in i+1..m1 repeat
          if (m(j,j) exquo mii) case "failed" then return
             lastStep(ijDivide(sf,i,j))
      sf

    -- given m and t row-equivalent matrices, with t in upper triangular --
          -- form  compute the matrix u such that u*m=t --
    findEqMat(m :  M,t : M) : Record(Hermite : M, eqMat : M) ==
      m1:=nrows m
      n1:=ncols m
      "and"/[zero? t(m1,j) for j in 1..n1] => -- there are 0 rows
         if "and"/[zero? t(1,j) for j in 1..n1] 
         then return [m,scalarMatrix(m1,1)]  -- m is the zero matrix
         mm:=horizConcat(m,scalarMatrix(m1,1))
         mmh:=rowEchelon mm
         [subMatrix(mmh,1,m1,1,n1), subMatrix(mmh,1,m1,n1+1,n1+m1)]
      u:M:=zero(m1,m1)
      j: Integer :=1
      while t(1,j)=0 repeat j:=j+1  -- there are 0 columns
      t1:=copy t
      mm:=copy m
      if j>1 then 
        t1:=subMatrix(t,1,m1,j,n1)
        mm:=subMatrix(m,1,m1,j,n1)
      t11:=t1(1,1)
      for i in 1..m1 repeat
        u(i,1) := (mm(i,1) exquo t11) :: R
        for j in 2..m1 repeat
          j0:=j
          tjj : R
          while zero?(tjj:=t1(j,j0)) repeat j0:=j0+1
          u(i,j) :=((mm(i,j0) - ("+"/[u(i,k) * t1(k,j0) for k in 1..(j-1)])) exquo
                    tjj) :: R
      u1:M2:= map(#1 :: QF,u)$MATCAT1
      [t,map(retract$QF,(inverse u1)::M2)$MATCAT2]

                --- Hermite normal form of m ---
    hermite(m:M) : M == rowEchelon m

     -- Hermite normal form and equivalence matrix --
    completeHermite(m : M) : Record(Hermite : M, eqMat : M) ==
      findEqMat(m,rowEchelon m)
 
    smith(m : M) : M == completeSmith(m).Smith

    completeSmith(m : M) : Record(Smith : M, leftEqMat : M, rightEqMat : M) ==
      cm1:=completeHermite m
      leftm:=cm1.eqMat
      m1:=cm1.Hermite
      isDiagonal? m1 => lastStep([m1,leftm,scalarMatrix(ncols m,1)])
      nr:=nrows m
      cm1:=completeHermite transpose m1
      rightm:= transpose cm1.eqMat
      m1:=cm1.Hermite
      isDiagonal? m1 => 
        cm2:=lastStep([m1,leftm,rightm])
        nrows(m:=cm2.Smith) = nr => cm2
        [transpose m,cm2.leftEqMat, cm2.rightEqMat]
      cm2:=completeSmith m1
      cm2:=lastStep([cm2.Smith,transpose(cm2.rightEqMat)*leftm,
                rightm*transpose(cm2.leftEqMat)])
      nrows(m:=cm2.Smith) = nr => cm2
      [transpose m, cm2.leftEqMat, cm2.rightEqMat]

    -- Find the solution in R of the linear system mX = b --
    diophantineSystem(m : M, b : Col) : Both  ==
      sf:=completeSmith m
      sm:=sf.Smith
      m1:=nrows sm
      lm:=sf.leftEqMat
      b1:Col:= lm* b
      (t1:=test1(sm,b1,m1)) case "failed" => ["failed",empty()]
      dk:=t1 :: NNI
      n1:=ncols sm
      (t2:=test2(sm,b1,n1,dk)) case "failed" => ["failed",empty()]
      rm := sf.rightEqMat
      sol:=rm*(t2 :: Col)  -- particular solution
      dk = n1  => [sol,list new(n1,0)]
      lsol:List Col := [column(rm,i) for i in (dk+1)..n1]
      [sol,lsol]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package SMITH SmithNormalForm>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}