\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra sign.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package TOOLSIGN ToolsForSign} <<package TOOLSIGN ToolsForSign>>= )abbrev package TOOLSIGN ToolsForSign ++ Tools for the sign finding utilities ++ Author: Manuel Bronstein ++ Date Created: 25 August 1989 ++ Date Last Updated: 26 November 1991 ++ Description: Tools for the sign finding utilities. ToolsForSign(R:Ring): with sign : R -> Union(Integer, "failed") ++ sign(r) \undocumented nonQsign : R -> Union(Integer, "failed") ++ nonQsign(r) \undocumented direction: String -> Integer ++ direction(s) \undocumented == add if R is AlgebraicNumber then nonQsign r == sign((r pretend AlgebraicNumber)::Expression( Integer))$ElementaryFunctionSign(Integer, Expression Integer) else nonQsign r == "failed" if R has RetractableTo Fraction Integer then sign r == (u := retractIfCan(r)@Union(Fraction Integer, "failed")) case Fraction(Integer) => sign(u::Fraction Integer) nonQsign r else if R has RetractableTo Integer then sign r == (u := retractIfCan(r)@Union(Integer, "failed")) case "failed" => "failed" sign(u::Integer) else sign r == zero? r => 0 -- one? r => 1 r = 1 => 1 r = -1 => -1 "failed" direction st == st = "right" => 1 st = "left" => -1 error "Unknown option" @ \section{package INPSIGN InnerPolySign} <<package INPSIGN InnerPolySign>>= )abbrev package INPSIGN InnerPolySign --%% InnerPolySign ++ Author: Manuel Bronstein ++ Date Created: 23 Aug 1989 ++ Date Last Updated: 19 Feb 1990 ++ Description: ++ Find the sign of a polynomial around a point or infinity. InnerPolySign(R, UP): Exports == Implementation where R : Ring UP: UnivariatePolynomialCategory R U ==> Union(Integer, "failed") Exports ==> with signAround: (UP, Integer, R -> U) -> U ++ signAround(u,i,f) \undocumented signAround: (UP, R, Integer, R -> U) -> U ++ signAround(u,r,i,f) \undocumented signAround: (UP, R, R -> U) -> U ++ signAround(u,r,f) \undocumented Implementation ==> add signAround(p:UP, x:R, rsign:R -> U) == (ur := signAround(p, x, 1, rsign)) case "failed" => "failed" (ul := signAround(p, x, -1, rsign)) case "failed" => "failed" (ur::Integer) = (ul::Integer) => ur "failed" signAround(p, x, dir, rsign) == zero? p => 0 zero?(r := p x) => (u := signAround(differentiate p, x, dir, rsign)) case "failed" => "failed" dir * u::Integer rsign r signAround(p:UP, dir:Integer, rsign:R -> U) == zero? p => 0 (u := rsign leadingCoefficient p) case "failed" => "failed" (dir > 0) or (even? degree p) => u::Integer - (u::Integer) @ \section{package SIGNRF RationalFunctionSign} <<package SIGNRF RationalFunctionSign>>= )abbrev package SIGNRF RationalFunctionSign --%% RationalFunctionSign ++ Author: Manuel Bronstein ++ Date Created: 23 August 1989 ++ Date Last Updated: 26 November 1991 ++ Description: ++ Find the sign of a rational function around a point or infinity. RationalFunctionSign(R:GcdDomain): Exports == Implementation where SE ==> Symbol P ==> Polynomial R RF ==> Fraction P ORF ==> OrderedCompletion RF UP ==> SparseUnivariatePolynomial RF U ==> Union(Integer, "failed") SGN ==> ToolsForSign(R) Exports ==> with sign: RF -> U ++ sign f returns the sign of f if it is constant everywhere. sign: (RF, SE, ORF) -> U ++ sign(f, x, a) returns the sign of f as x approaches \spad{a}, ++ from both sides if \spad{a} is finite. sign: (RF, SE, RF, String) -> U ++ sign(f, x, a, s) returns the sign of f as x nears \spad{a} from ++ the left (below) if s is the string \spad{"left"}, ++ or from the right (above) if s is the string \spad{"right"}. Implementation ==> add import SGN import InnerPolySign(RF, UP) import PolynomialCategoryQuotientFunctions(IndexedExponents SE, SE, R, P, RF) psign : P -> U sqfrSign : P -> U termSign : P -> U listSign : (List P, Integer) -> U finiteSign: (Fraction UP, RF) -> U sign f == (un := psign numer f) case "failed" => "failed" (ud := psign denom f) case "failed" => "failed" (un::Integer) * (ud::Integer) finiteSign(g, a) == (ud := signAround(denom g, a, sign$%)) case "failed" => "failed" (un := signAround(numer g, a, sign$%)) case "failed" => "failed" (un::Integer) * (ud::Integer) sign(f, x, a) == g := univariate(f, x) zero?(n := whatInfinity a) => finiteSign(g, retract a) (ud := signAround(denom g, n, sign$%)) case "failed" => "failed" (un := signAround(numer g, n, sign$%)) case "failed" => "failed" (un::Integer) * (ud::Integer) sign(f, x, a, st) == (ud := signAround(denom(g := univariate(f, x)), a, d := direction st, sign$%)) case "failed" => "failed" (un := signAround(numer g, a, d, sign$%)) case "failed" => "failed" (un::Integer) * (ud::Integer) psign p == (r := retractIfCan(p)@Union(R, "failed")) case R => sign(r::R)$SGN (u := sign(retract(unit(s := squareFree p))@R)$SGN) case "failed" => "failed" ans := u::Integer for term in factors s | odd?(term.exponent) repeat (u := sqfrSign(term.factor)) case "failed" => return "failed" ans := ans * (u::Integer) ans sqfrSign p == (u := termSign first(l := monomials p)) case "failed" => "failed" listSign(rest l, u::Integer) listSign(l, s) == for term in l repeat (u := termSign term) case "failed" => return "failed" u::Integer ^= s => return "failed" s termSign term == for var in variables term repeat odd? degree(term, var) => return "failed" sign(leadingCoefficient term)$SGN @ \section{package LIMITRF RationalFunctionLimitPackage} <<package LIMITRF RationalFunctionLimitPackage>>= )abbrev package LIMITRF RationalFunctionLimitPackage ++ Computation of limits for rational functions ++ Author: Manuel Bronstein ++ Date Created: 4 October 1989 ++ Date Last Updated: 26 November 1991 ++ Description: Computation of limits for rational functions. ++ Keywords: limit, rational function. RationalFunctionLimitPackage(R:GcdDomain):Exports==Implementation where Z ==> Integer P ==> Polynomial R RF ==> Fraction P EQ ==> Equation ORF ==> OrderedCompletion RF OPF ==> OnePointCompletion RF UP ==> SparseUnivariatePolynomial RF SE ==> Symbol QF ==> Fraction SparseUnivariatePolynomial RF Result ==> Union(ORF, "failed") TwoSide ==> Record(leftHandLimit:Result, rightHandLimit:Result) U ==> Union(ORF, TwoSide, "failed") RFSGN ==> RationalFunctionSign(R) Exports ==> with -- The following are the one we really want, but the interpreter cannot -- handle them... -- limit: (RF,EQ ORF) -> U -- ++ limit(f(x),x,a) computes the real two-sided limit lim(x -> a,f(x)) -- complexLimit: (RF,EQ OPF) -> OPF -- ++ complexLimit(f(x),x,a) computes the complex limit lim(x -> a,f(x)) -- ... so we replace them by the following 4: limit: (RF,EQ OrderedCompletion P) -> U ++ limit(f(x),x = a) computes the real two-sided limit ++ of f as its argument x approaches \spad{a}. limit: (RF,EQ RF) -> U ++ limit(f(x),x = a) computes the real two-sided limit ++ of f as its argument x approaches \spad{a}. complexLimit: (RF,EQ OnePointCompletion P) -> OPF ++ \spad{complexLimit(f(x),x = a)} computes the complex limit ++ of \spad{f} as its argument x approaches \spad{a}. complexLimit: (RF,EQ RF) -> OPF ++ complexLimit(f(x),x = a) computes the complex limit ++ of f as its argument x approaches \spad{a}. limit: (RF,EQ RF,String) -> Result ++ limit(f(x),x,a,"left") computes the real limit ++ of f as its argument x approaches \spad{a} from the left; ++ limit(f(x),x,a,"right") computes the corresponding limit as x ++ approaches \spad{a} from the right. Implementation ==> add import ToolsForSign R import InnerPolySign(RF, UP) import RFSGN import PolynomialCategoryQuotientFunctions(IndexedExponents SE, SE, R, P, RF) finiteComplexLimit: (QF, RF) -> OPF finiteLimit : (QF, RF) -> U fLimit : (Z, UP, RF, Z) -> Result -- These 2 should be exported, see comment above locallimit : (RF, SE, ORF) -> U locallimitcomplex: (RF, SE, OPF) -> OPF limit(f:RF,eq:EQ RF) == (xx := retractIfCan(lhs eq)@Union(SE,"failed")) case "failed" => error "limit: left hand side must be a variable" x := xx :: SE; a := rhs eq locallimit(f,x,a::ORF) complexLimit(f:RF,eq:EQ RF) == (xx := retractIfCan(lhs eq)@Union(SE,"failed")) case "failed" => error "limit: left hand side must be a variable" x := xx :: SE; a := rhs eq locallimitcomplex(f,x,a::OPF) limit(f:RF,eq:EQ OrderedCompletion P) == (p := retractIfCan(lhs eq)@Union(P,"failed")) case "failed" => error "limit: left hand side must be a variable" (xx := retractIfCan(p)@Union(SE,"failed")) case "failed" => error "limit: left hand side must be a variable" x := xx :: SE a := map(#1::RF,rhs eq)$OrderedCompletionFunctions2(P,RF) locallimit(f,x,a) complexLimit(f:RF,eq:EQ OnePointCompletion P) == (p := retractIfCan(lhs eq)@Union(P,"failed")) case "failed" => error "limit: left hand side must be a variable" (xx := retractIfCan(p)@Union(SE,"failed")) case "failed" => error "limit: left hand side must be a variable" x := xx :: SE a := map(#1::RF,rhs eq)$OnePointCompletionFunctions2(P,RF) locallimitcomplex(f,x,a) fLimit(n, d, a, dir) == (s := signAround(d, a, dir, sign$RFSGN)) case "failed" => "failed" n * (s::Z) * plusInfinity() finiteComplexLimit(f, a) == zero?(n := (numer f) a) => 0 zero?(d := (denom f) a) => infinity() (n / d)::OPF finiteLimit(f, a) == zero?(n := (numer f) a) => 0 zero?(d := (denom f) a) => (s := sign(n)$RFSGN) case "failed" => "failed" rhsl := fLimit(s::Z, denom f, a, 1) lhsl := fLimit(s::Z, denom f, a, -1) rhsl case "failed" => lhsl case "failed" => "failed" [lhsl, rhsl] lhsl case "failed" => [lhsl, rhsl] rhsl::ORF = lhsl::ORF => lhsl::ORF [lhsl, rhsl] (n / d)::ORF locallimit(f,x,a) == g := univariate(f, x) zero?(n := whatInfinity a) => finiteLimit(g, retract a) (dn := degree numer g) > (dd := degree denom g) => (sn := signAround(numer g, n, sign$RFSGN)) case "failed" => "failed" (sd := signAround(denom g, n, sign$RFSGN)) case "failed" => "failed" (sn::Z) * (sd::Z) * plusInfinity() dn < dd => 0 ((leadingCoefficient numer g) / (leadingCoefficient denom g))::ORF limit(f,eq,st) == (xx := retractIfCan(lhs eq)@Union(SE,"failed")) case "failed" => error "limit: left hand side must be a variable" x := xx :: SE; a := rhs eq zero?(n := (numer(g := univariate(f, x))) a) => 0 zero?(d := (denom g) a) => (s := sign(n)$RFSGN) case "failed" => "failed" fLimit(s::Z, denom g, a, direction st) (n / d)::ORF locallimitcomplex(f,x,a) == g := univariate(f, x) (r := retractIfCan(a)@Union(RF, "failed")) case RF => finiteComplexLimit(g, r::RF) (dn := degree numer g) > (dd := degree denom g) => infinity() dn < dd => 0 ((leadingCoefficient numer g) / (leadingCoefficient denom g))::OPF @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package TOOLSIGN ToolsForSign>> <<package INPSIGN InnerPolySign>> <<package SIGNRF RationalFunctionSign>> <<package LIMITRF RationalFunctionLimitPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}