\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra si.spad} \author{Stephen M. Watt, Michael Monagan, James Davenport, Barry Trager} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category INS IntegerNumberSystem} <<category INS IntegerNumberSystem>>= )abbrev category INS IntegerNumberSystem ++ Author: Stephen M. Watt ++ Date Created: ++ January 1988 ++ Change History: ++ Basic Operations: ++ addmod, base, bit?, copy, dec, even?, hash, inc, invmod, length, mask, ++ positiveRemainder, symmetricRemainder, multiplicativeValuation, mulmod, ++ odd?, powmod, random, rational, rational?, rationalIfCan, shift, submod ++ Description: An \spad{IntegerNumberSystem} is a model for the integers. IntegerNumberSystem(): Category == Join(UniqueFactorizationDomain, EuclideanDomain, OrderedIntegralDomain, DifferentialRing, ConvertibleTo Integer, RetractableTo Integer, LinearlyExplicitRingOver Integer, ConvertibleTo InputForm, ConvertibleTo Pattern Integer, PatternMatchable Integer, CombinatorialFunctionCategory, RealConstant, CharacteristicZero, StepThrough) with odd? : % -> Boolean ++ odd?(n) returns true if and only if n is odd. even? : % -> Boolean ++ even?(n) returns true if and only if n is even. multiplicativeValuation ++ euclideanSize(a*b) returns \spad{euclideanSize(a)*euclideanSize(b)}. base : () -> % ++ base() returns the base for the operations of \spad{IntegerNumberSystem}. length : % -> % ++ length(a) length of \spad{a} in digits. shift : (%, %) -> % ++ shift(a,i) shift \spad{a} by i digits. bit? : (%, %) -> Boolean ++ bit?(n,i) returns true if and only if i-th bit of n is a 1. positiveRemainder : (%, %) -> % ++ positiveRemainder(a,b) (where \spad{b > 1}) yields r ++ where \spad{0 <= r < b} and \spad{r == a rem b}. symmetricRemainder : (%, %) -> % ++ symmetricRemainder(a,b) (where \spad{b > 1}) yields r ++ where \spad{ -b/2 <= r < b/2 }. rational?: % -> Boolean ++ rational?(n) tests if n is a rational number ++ (see \spadtype{Fraction Integer}). rational : % -> Fraction Integer ++ rational(n) creates a rational number (see \spadtype{Fraction Integer}).. rationalIfCan: % -> Union(Fraction Integer, "failed") ++ rationalIfCan(n) creates a rational number, or returns "failed" if this is not possible. random : () -> % ++ random() creates a random element. random : % -> % ++ random(a) creates a random element from 0 to \spad{a-1}. copy : % -> % ++ copy(n) gives a copy of n. inc : % -> % ++ inc(x) returns \spad{x + 1}. dec : % -> % ++ dec(x) returns \spad{x - 1}. mask : % -> % ++ mask(n) returns \spad{2**n-1} (an n bit mask). addmod : (%,%,%) -> % ++ addmod(a,b,p), \spad{0<=a,b<p>1}, means \spad{a+b mod p}. submod : (%,%,%) -> % ++ submod(a,b,p), \spad{0<=a,b<p>1}, means \spad{a-b mod p}. mulmod : (%,%,%) -> % ++ mulmod(a,b,p), \spad{0<=a,b<p>1}, means \spad{a*b mod p}. powmod : (%,%,%) -> % ++ powmod(a,b,p), \spad{0<=a,b<p>1}, means \spad{a**b mod p}. invmod : (%,%) -> % ++ invmod(a,b), \spad{0<=a<b>1}, \spad{(a,b)=1} means \spad{1/a mod b}. canonicalUnitNormal -- commutative("*") -- follows from the above add characteristic == 0 differentiate x == 0 even? x == not odd? x positive? x == x > 0 copy x == x bit?(x, i) == odd? shift(x, -i) mask n == dec shift(1, n) rational? x == true euclideanSize(x) == x=0 => error "euclideanSize called on zero" x<0 => (-convert(x)@Integer)::NonNegativeInteger convert(x)@Integer::NonNegativeInteger convert(x:%):Float == (convert(x)@Integer)::Float convert(x:%):DoubleFloat == (convert(x)@Integer)::DoubleFloat convert(x:%):InputForm == convert(convert(x)@Integer) retract(x:%):Integer == convert(x)@Integer convert(x:%):Pattern(Integer)== convert(x)@Integer ::Pattern(Integer) factor x == factor(x)$IntegerFactorizationPackage(%) squareFree x == squareFree(x)$IntegerFactorizationPackage(%) prime? x == prime?(x)$IntegerPrimesPackage(%) factorial x == factorial(x)$IntegerCombinatoricFunctions(%) binomial(n, m) == binomial(n, m)$IntegerCombinatoricFunctions(%) permutation(n, m) == permutation(n,m)$IntegerCombinatoricFunctions(%) retractIfCan(x:%):Union(Integer, "failed") == convert(x)@Integer init() == 0 -- iterates in order 0,1,-1,2,-2,3,-3,... nextItem(n) == zero? n => 1 n>0 => -n 1-n patternMatch(x, p, l) == patternMatch(x, p, l)$PatternMatchIntegerNumberSystem(%) rational(x:%):Fraction(Integer) == (convert(x)@Integer)::Fraction(Integer) rationalIfCan(x:%):Union(Fraction Integer, "failed") == (convert(x)@Integer)::Fraction(Integer) symmetricRemainder(x, n) == r := x rem n r = 0 => r if n < 0 then n:=-n r > 0 => 2 * r > n => r - n r 2*r + n <= 0 => r + n r invmod(a, b) == if negative? a then a := positiveRemainder(a, b) c := a; c1:% := 1 d := b; d1:% := 0 while not zero? d repeat q := c quo d r := c-q*d r1 := c1-q*d1 c := d; c1 := d1 d := r; d1 := r1 not one? c => error "inverse does not exist" negative? c1 => c1 + b c1 powmod(x, n, p) == if negative? x then x := positiveRemainder(x, p) zero? x => 0 zero? n => 1 y:% := 1 z := x repeat if odd? n then y := mulmod(y, z, p) zero?(n := shift(n, -1)) => return y z := mulmod(z, z, p) @ \section{domain SINT SingleInteger} <<domain SINT SingleInteger>>= )abbrev domain SINT SingleInteger ++ Author: Michael Monagan ++ Date Created: ++ January 1988 ++ Change History: ++ Basic Operations: max, min, ++ not, and, or, xor, Not, And, Or ++ Related Constructors: ++ Keywords: single integer ++ Description: SingleInteger is intended to support machine integer ++ arithmetic. -- MAXINT, BASE (machine integer constants) -- MODULUS, MULTIPLIER (random number generator constants) -- Lisp dependencies -- EQ, ABSVAL, TIMES, INTEGER-LENGTH, HASHEQ, REMAINDER -- QSLESSP, QSGREATERP, QSADD1, QSSUB1, QSMINUS, QSPLUS, QSDIFFERENCE -- QSTIMES, QSREMAINDER, QSODDP, QSZEROP, QSMAX, QSMIN, QSNOT, QSAND -- QSOR, QSXOR, QSLEFTSHIFT, QSADDMOD, QSDIFMOD, QSMULTMOD SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,BooleanLogic,Logic,OpenMath) with canonical ++ \spad{canonical} means that mathematical equality is implied by data structure equality. canonicalsClosed ++ \spad{canonicalClosed} means two positives multiply to give positive. noetherian ++ \spad{noetherian} all ideals are finitely generated (in fact principal). -- bit operations xor: (%, %) -> % ++ xor(n,m) returns the bit-by-bit logical {\em xor} of ++ the single integers n and m. Not : % -> % ++ Not(n) returns the bit-by-bit logical {\em not} of the single integer n. And : (%,%) -> % ++ And(n,m) returns the bit-by-bit logical {\em and} of ++ the single integers n and m. Or : (%,%) -> % ++ Or(n,m) returns the bit-by-bit logical {\em or} of ++ the single integers n and m. == SubDomain(Integer, SMINTP(#1)$Lisp) add seed : % := 1$Lisp -- for random() MAXINT ==> _$ShortMaximum$Lisp MININT ==> _$ShortMinimum$Lisp BASE ==> 67108864$Lisp -- 2**26 MULTIPLIER ==> 314159269$Lisp -- from Knuth's table MODULUS ==> 2147483647$Lisp -- 2**31-1 writeOMSingleInt(dev: OpenMathDevice, x: %): Void == if x < 0 then OMputApp(dev) OMputSymbol(dev, "arith1", "unary_minus") OMputInteger(dev, convert(-x)) OMputEndApp(dev) else OMputInteger(dev, convert(x)) OMwrite(x: %): String == s: String := "" sp := OM_-STRINGTOSTRINGPTR(s)$Lisp dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML()) OMputObject(dev) writeOMSingleInt(dev, x) OMputEndObject(dev) OMclose(dev) s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String s OMwrite(x: %, wholeObj: Boolean): String == s: String := "" sp := OM_-STRINGTOSTRINGPTR(s)$Lisp dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML()) if wholeObj then OMputObject(dev) writeOMSingleInt(dev, x) if wholeObj then OMputEndObject(dev) OMclose(dev) s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String s OMwrite(dev: OpenMathDevice, x: %): Void == OMputObject(dev) writeOMSingleInt(dev, x) OMputEndObject(dev) OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void == if wholeObj then OMputObject(dev) writeOMSingleInt(dev, x) if wholeObj then OMputEndObject(dev) reducedSystem m == m pretend Matrix(Integer) coerce(x):OutputForm == rep(x)::OutputForm convert(x:%):Integer == rep x i:Integer * y:% == i::% * y 0 == 0$Lisp 1 == 1$Lisp base() == 2$Lisp max() == MAXINT min() == MININT x = y == %ieq(x,y)$Foreign(Builtin) ~ x == LOGNOT(x)$Lisp not(x) == LOGNOT(x)$Lisp x /\ y == LOGAND(x,y)$Lisp x \/ y == LOGIOR(x,y)$Lisp Not(x) == LOGNOT(x)$Lisp And(x,y) == LOGAND(x,y)$Lisp x and y == And(x,y) Or(x,y) == LOGIOR(x,y)$Lisp x or y == Or(x,y) xor(x,y) == LOGXOR(x,y)$Lisp x < y == QSLESSP(x,y)$Lisp x > y == QSGREATERP(x,y)$Lisp x <= y == %ile(x,y)$Foreign(Builtin) x >= y == %ige(x,y)$Foreign(Builtin) inc x == QSADD1(x)$Lisp dec x == QSSUB1(x)$Lisp - x == QSMINUS(x)$Lisp x + y == QSPLUS(x,y)$Lisp x:% - y:% == QSDIFFERENCE(x,y)$Lisp x:% * y:% == QSTIMES(x,y)$Lisp x:% ** n:NonNegativeInteger == (%ipow(x, n)$Foreign(Builtin) pretend Integer)::% x quo y == QSQUOTIENT(x,y)$Lisp x rem y == QSREMAINDER(x,y)$Lisp divide(x, y) == CONS(QSQUOTIENT(x,y)$Lisp,QSREMAINDER(x,y)$Lisp)$Lisp gcd(x,y) == %igcd(x,y)$Foreign(Builtin) abs(x) == QSABSVAL(x)$Lisp odd?(x) == QSODDP(x)$Lisp zero?(x) == QSZEROP(x)$Lisp one?(x) == x = 1 max(x,y) == QSMAX(x,y)$Lisp min(x,y) == QSMIN(x,y)$Lisp hash(x) == HASHEQ(x)$Lisp length(x) == INTEGER_-LENGTH(x)$Lisp shift(x,n) == QSLEFTSHIFT(x,n)$Lisp mulmod(a,b,p) == QSMULTMOD(a,b,p)$Lisp addmod(a,b,p) == QSADDMOD(a,b,p)$Lisp submod(a,b,p) == QSDIFMOD(a,b,p)$Lisp negative?(x) == QSMINUSP$Lisp x size() == (MAXINT -$Lisp MININT +$Lisp 1$Lisp) pretend NonNegativeInteger index i == per(i + MININT - 1$Lisp) lookup x == (x -$Lisp MININT +$Lisp 1$Lisp) pretend PositiveInteger reducedSystem(m, v) == [m pretend Matrix(Integer), v pretend Vector(Integer)] positiveRemainder(x,n) == r := QSREMAINDER(x,n)$Lisp QSMINUSP(r)$Lisp => QSMINUSP(n)$Lisp => QSDIFFERENCE(x, n)$Lisp QSPLUS(r, n)$Lisp r coerce(x:Integer):% == per x random() == seed := REMAINDER(TIMES(MULTIPLIER,seed)$Lisp,MODULUS)$Lisp REMAINDER(seed,BASE)$Lisp random(n) == RANDOM(n)$Lisp UCA ==> Record(unit:%,canonical:%,associate:%) unitNormal x == x < 0 => [-1,-x,-1]$UCA [1,x,1]$UCA @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- Copyright (C) 2007-2010, Gabriel Dos Reis. -- All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category INS IntegerNumberSystem>> <<domain SINT SingleInteger>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}