\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra sets.spad} \author{Michael Monagan, Richard Jenks} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain SET Set} <<domain SET Set>>= )abbrev domain SET Set ++ Author: Michael Monagan; revised by Richard Jenks ++ Date Created: August 87 through August 88 ++ Date Last Updated: May 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A set over a domain D models the usual mathematical notion of a finite set ++ of elements from D. ++ Sets are unordered collections of distinct elements ++ (that is, order and duplication does not matter). ++ The notation \spad{set [a,b,c]} can be used to create ++ a set and the usual operations such as union and intersection are available ++ to form new sets. ++ In our implementation, \Language{} maintains the entries in ++ sorted order. Specifically, the parts function returns the entries ++ as a list in ascending order and ++ the extract operation returns the maximum entry. ++ Given two sets s and t where \spad{#s = m} and \spad{#t = n}, ++ the complexity of ++ \spad{s = t} is \spad{O(min(n,m))} ++ \spad{s < t} is \spad{O(max(n,m))} ++ \spad{union(s,t)}, \spad{intersect(s,t)}, \spad{minus(s,t)}, \spad{symmetricDifference(s,t)} is \spad{O(max(n,m))} ++ \spad{member(x,t)} is \spad{O(n log n)} ++ \spad{insert(x,t)} and \spad{remove(x,t)} is \spad{O(n)} Set(S:SetCategory): FiniteSetAggregate S == add Rep := FlexibleArray(S) # s == _#$Rep s brace() == empty() set() == empty() empty() == empty()$Rep copy s == copy(s)$Rep parts s == parts(s)$Rep inspect s == (empty? s => error "Empty set"; s(maxIndex s)) extract_! s == x := inspect s delete_!(s, maxIndex s) x find(f, s) == find(f, s)$Rep map(f, s) == map_!(f,copy s) map_!(f,s) == map_!(f,s)$Rep removeDuplicates_! s reduce(f, s) == reduce(f, s)$Rep reduce(f, s, x) == reduce(f, s, x)$Rep reduce(f, s, x, y) == reduce(f, s, x, y)$Rep if S has ConvertibleTo InputForm then convert(x:%):InputForm == convert [convert("set"::Symbol)@InputForm, convert(parts x)@InputForm] if S has OrderedSet then s = t == s =$Rep t max s == inspect s min s == (empty? s => error "Empty set"; s(minIndex s)) construct l == zero?(n := #l) => empty() a := new(n, first l) for i in minIndex(a).. for x in l repeat a.i := x removeDuplicates_! sort_! a insert_!(x, s) == n := inc maxIndex s k := minIndex s while k < n and x > s.k repeat k := inc k k < n and s.k = x => s insert_!(x, s, k) member?(x, s) == -- binary search empty? s => false t := maxIndex s b := minIndex s while b < t repeat m := (b+t) quo 2 if x > s.m then b := m+1 else t := m x = s.t remove_!(x:S, s:%) == n := inc maxIndex s k := minIndex s while k < n and x > s.k repeat k := inc k k < n and x = s.k => delete_!(s, k) s -- the set operations are implemented as variations of merging intersect(s, t) == m := maxIndex s n := maxIndex t i := minIndex s j := minIndex t r := empty() while i <= m and j <= n repeat s.i = t.j => (concat_!(r, s.i); i := i+1; j := j+1) if s.i < t.j then i := i+1 else j := j+1 r difference(s:%, t:%) == m := maxIndex s n := maxIndex t i := minIndex s j := minIndex t r := empty() while i <= m and j <= n repeat s.i = t.j => (i := i+1; j := j+1) s.i < t.j => (concat_!(r, s.i); i := i+1) j := j+1 while i <= m repeat (concat_!(r, s.i); i := i+1) r symmetricDifference(s, t) == m := maxIndex s n := maxIndex t i := minIndex s j := minIndex t r := empty() while i <= m and j <= n repeat s.i < t.j => (concat_!(r, s.i); i := i+1) s.i > t.j => (concat_!(r, t.j); j := j+1) i := i+1; j := j+1 while i <= m repeat (concat_!(r, s.i); i := i+1) while j <= n repeat (concat_!(r, t.j); j := j+1) r subset?(s, t) == m := maxIndex s n := maxIndex t m > n => false i := minIndex s j := minIndex t while i <= m and j <= n repeat s.i = t.j => (i := i+1; j := j+1) s.i > t.j => j := j+1 return false i > m union(s:%, t:%) == m := maxIndex s n := maxIndex t i := minIndex s j := minIndex t r := empty() while i <= m and j <= n repeat s.i = t.j => (concat_!(r, s.i); i := i+1; j := j+1) s.i < t.j => (concat_!(r, s.i); i := i+1) (concat_!(r, t.j); j := j+1) while i <= m repeat (concat_!(r, s.i); i := i+1) while j <= n repeat (concat_!(r, t.j); j := j+1) r else insert_!(x, s) == for k in minIndex s .. maxIndex s repeat s.k = x => return s insert_!(x, s, inc maxIndex s) remove_!(x:S, s:%) == n := inc maxIndex s k := minIndex s while k < n repeat x = s.k => return delete_!(s, k) k := inc k s @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain SET Set>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}